SEARCH

SEARCH BY CITATION

References

  • Ahmed S. H. and Koob G. F. (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298300.
  • Ahmed S. H. and Koob G. F. (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146, 303312.
  • Ahmed S. H. and Koob G. F. (2005) Transition to drug addiction: a negative reinforcement model based on an allostatic decrease in reward function. Psychopharmacology 180, 473490.
  • Ahmed S. H., Kenny P. J., Koob G. F. and Markou A. (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat. Neurosci. 5, 625626.
  • Ahmed S. H., Lin D., Koob G. F. and Parsons L. H. (2003) Escalation of cocaine self-administration does not depend on altered cocaine-induced nucleus accumbens dopamine levels. J. Neurochem. 86, 102113.
  • Barrett A. C., Miller J. R., Dohrmann J. M. and Caine S. B. (2004) Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology 47(Suppl 1), 256273.
  • Ben-Shahar O., Moscarello J. M. and Ettenberg A. (2006) One hour, but not six hours, of daily access to self-administered cocaine results in elevated levels of the dopamine transporter. Brain Res. 1095 , 148153.
  • Boileau I., Dagher A., Leyton M., Gunn R. N., Baker G. B., Diksic M. and Benkelfat C. (2006) Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch. Gen. Psychiatry 63, 13861395.
  • Brookshire B. R. and Jones S. R. (2009) Direct and indirect 5-HT receptor agonists produce gender-specific effects on locomotor and vertical activities in C57 BL/6J mice. Pharmacol. Biochem. Behav. 94, 194203.
  • Brown T. E., Lee B. R., Mu P. et al. (2011) A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J. Neurosci. 31, 81638174.
  • Calipari E. S., Ferris M. J., Melchior J. R., Bermejo K., Salahpour A., Roberts D. C. and Jones S. R. (2013a) Methylphenidate and cocaine self-administration produce distinct dopamine terminal alterations. Addict. Biol. (in press).
  • Calipari E. S., Ferris M. J., Zimmer B. A., Roberts D. C. S. and Jones S. R. (2013b) Temporal pattern of cocaine intake determines tolerance versus sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology (in press).
  • Calipari E. S., Beveridge T. J. R., Jones S. R. and Porrino L. J. (2013c) Withdrawal from extended access cocaine self-administration results in dysregulated functional activity and altered locomotor activity in rats. Eur. J. Neurosci. (in press).
  • Carelli R. M. and Deadwyler S. A. (1996) Dose-dependent transitions in nucleus accumbens cell firing and behavioral responding during cocaine self-administration sessions in rats. J. Pharmacol. Exp. Ther. 277, 385393.
  • Chen R., Tilley M. R., Wei H. et al. (2006) Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc. Natl Acad. Sci. USA 103, 93339338.
  • Cornish J. L. and Kalivas P. W. (2001) Cocaine sensitization and craving: differing roles for dopamine and glutamate in the nucleus accumbens. J. Addict. Dis. 20, 4354.
  • Dackis C. A. and O'Brien C. P. (2001) Cocaine dependence: a disease of the brain's reward centers. J. Subst. Abuse Treat. 21, 111117.
  • Ferris M. J., Mateo Y., Roberts D. C. and Jones S. R. (2011) Cocaine-insensitive dopamine transporters with intact substrate transport produced by self-administration. Biol. Psychiatry 69, 201207.
  • Ferris M. J., Calipari E. S., Mateo Y., Melchior J. R., Roberts D. C. and Jones S. R. (2012) Cocaine self-administration produces pharmacodynamic tolerance: differential effects on the potency of dopamine transporter blockers, releasers, and methylphenidate. Neuropsychopharmacology 37, 17081716.
  • Ferris M. J., Calipari E. S., Melchior J. R., Roberts D. C., España R. A. and Jones S. R. (2013) Paradoxical tolerance to cocaine after initial supersensitivity in drug-use-prone animals. Eur. J. Neurosci. 38, 26282636.
  • Hurd Y. L., Weiss F., Koob G. F., And N. E. and Ungerstedt U. (1989) Cocaine reinforcement and extracellular dopamine overflow in rat nucleus accumbens: an in vivo microdialysis study. Brain Res. 498, 199203.
  • Jones S. R., Garris P. A. and Wightman R. M. (1995) Different effects of cocaine and nomifensine on dopamine uptake in the caudate-putamen and nucleus accumbens. J Pharmacol Exp Ther, 274, 396403.
  • Koob G. F. (1996) Hedonic valence, dopamine and motivation. Mol. Psychiatry 1, 186189.
  • Koob G. F. and Le Moal M. (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278, 5258.
  • Koob G. F. and Le Moal M. (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97129.
  • Lack C. M., Jones S. R. and Roberts D. C. (2008) Increased breakpoints on a progressive ratio schedule reinforced by IV cocaine are associated with reduced locomotor activation and reduced dopamine efflux in nucleus accumbens shell in rats. Psychopharmacology 195, 517525.
  • Maisonneuve I. M., Ho A. and Kreek M. J. (1995) Chronic administration of a cocaine “binge” alters basal extracellular levels in male rats: an in vivo microdialysis study. J. Pharmacol. Exp. Ther. 272, 652657.
  • Marusich J. A., Beckmann J. S., Gipson C. D. and Bardo M. T. (2010) Methylphenidate as a reinforcer for rats: contingent delivery and intake escalation. Exp. Clin. Psychopharmacol. 18, 257266.
  • Mateo Y., Lack C. M., Morgan D., Roberts D. C. and Jones S. R. (2005) Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self-administration and deprivation. Neuropsychopharmacology 30, 14551463.
  • Meil W. M., Roll J. M., Grimm J. W., Lynch A. M. and See R. E. (1995) Tolerance-like attenuation to contingent and noncontingent cocaine-induced elevation of extracellular dopamine in the ventral striatum following 7 days of withdrawal from chronic treatment. Psychopharmacology (Berl) 118, 338346. Erratum in: Psychopharmacology (Berl) 121(2):285.
  • Meller E., Bordi F. and Bohmaker K. (1988) Enhancement by the D1 dopamine agonist SKF 38393 of specific components of stereotypy elicited by the D2 agonists LY 171555 and RU 24213. Life Sci. 42, 25612567.
  • Mendelson J. H., Sholar M., Mello N. K., Teoh S. K. and Sholar J. W. (1998) Cocaine tolerance: behavioral, cardiovascular, and neuroendocrine function in men. Neuropsychopharmacology 18, 263271.
  • Orio L., Edwards S., George O., Parsons L. H. and Koob G. F. (2009) A role for the endocannabinoid system in the increased motivation for cocaine in extended-access conditions. J. Neurosci. 29, 48464857.
  • Paterson N. E. and Markou A. (2003) Increased motivation for self-administered cocaine after escalated cocaine intake. NeuroReport 14, 22292232.
  • Reed S. C., Haney M., Evans S. M., Vadhan N. P., Rubin E. and Foltin R. W. (2009) Cardiovascular and subjective effects of repeated smoked cocaine administration in experienced cocaine users. Drug Alcohol Depend. 102, 102107.
  • Ritz M. C., Lamb R. J., Goldberg S. R. and Kuhar M. J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 12191223.
  • Roberts D. C., Corcoran M. E. and Fibiger H. C. (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol. Biochem. Behav. 6, 615620.
  • Thomas M. J., Kalivas P. W. and Shaham Y. (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol. 154, 327342.
  • Tilley M. R., Cagniard B., Zhuang X., Han D. D., Tiao N. and Gu H. H. (2007) Cocaine reward and locomotion stimulation in mice with reduced dopamine transporter expression. BMC Neurosci. 8, 42.
  • Volkow N. D., Wang G. J., Fowler J. S., Logan J., Hitzemannn R., Gatley S. J., MacGregor R. R. and Wolf A. P. (1996) Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology 14, 159168.
  • Volkow N. D., Wang G. J., Fowler J. S., Logan J., Gatley S. J., Hitzemann R., Chen A. D., Dewey S. L. and Pappas N. (1997a) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386, 830833.
  • Volkow N. D., Wang G. J. and Fowler J. S. (1997b) Imaging studies of cocaine in the human brain and studies of the cocaine addict. Ann. N. Y. Acad. Sci. 820, 4154; discussion 54–55.
  • Weiss F., Markou A., Lorang M. T. and Koob G. F. (1992) Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res. 593, 314318.
  • Wightman R. M., Amatore C., Engstrom R. C., Hale J. D., Kristensen E. W., Kuhr W. G. and May L. J. (1998) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25, 513523.
  • Willuhn I., Wanat M. J., Clark J. J. and Phillips P. E. (2010) Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr. Top. Behav. Neurosci. 3, 2971.
  • Wise R. A. and Bozarth M. A. (1987) A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469492.
  • Yorgason J. T., España R. A. and Jones S. R. (2011) Demon voltammetry and analysis software: analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures. J. Neurosci. Methods 202, 158164.