SEARCH

SEARCH BY CITATION

References

  • Abdi F., Quinn J. F., Jankovic J., et al. (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimer's Dis. 9, 293348.
  • Ali Y. O., Kitay B. M. and Zhai R. G. (2010) Dealing with misfolded proteins: examining the neuroprotective role of molecular chaperones in neurodegeneration. Molecules 15, 68596887.
  • Atkins N., Jr, Mitchell J. W., Romanova E. V., Morgan D. J., Cominski T. P., Ecker J. L., Pintar J. E., Sweedler J. V. and Gillette M. U. (2010) Circadian integration of glutamatergic signals by little SAAS in novel suprachiasmatic circuits. PLoS ONE 5, e12612.
  • Benilova I., Karran E. and De Strooper B. (2012) The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nat. Neurosci. 15, 349357.
  • Braks J. A. M. and Martens G. J. M. (1994) 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78, 263273.
  • Cameron A., Fortenberry Y. and Lindberg I. (2000) The SAAS granin exhibits structural and functional homology to 7B2 and contains a highly potent hexapeptide inhibitor of PC1. FEBS Lett. 473, 135138.
  • Chaudhuri B., Stephen C., Huijbregts R. and Martens G. (1995) The neuroendocrine protein 7B2 acts as a molecular chaperone in the in vitro folding of human insulin-like growth factor-1 secreted from yeast. Biochem. Biophys. Res. Commun. 211, 417425.
  • Davidsson P., Sjogren M., Andreasen N., Lindbjer M., Nilsson C. L., Westman-Brinkmalm A. and Blennow K. (2002) Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins. Brain Res. Mol. Brain Res. 109, 128133.
  • Emmanouilidou E., Melachroinou K., Roumeliotis T., Garbis S. D., Ntzouni M., Margaritis L. H., Stefanis L. and Vekrellis K. (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 68386851.
  • Feng Y., Reznik S. E. and Fricker L. D. (2001) Distribution of proSAAS-derived peptides in rat neuroendocrine tissues. Neuroscience 105, 469478.
  • Finehout E. J., Franck Z., Choe L. H., Relkin N. and Lee K. H. (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease. Ann. Neurol. 61, 120129.
  • Fortenberry Y., Hwang J. R., Apletalina E. V. and Lindberg I. (2002) Functional characterization of ProSAAS: similarities and differences with 7B2. J. Biol. Chem. 277, 51755186.
  • Fricker L. D., McKinzie A. A., Sun J., et al. (2000) Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J. Neurosci. 20, 639648.
  • Guest P. C., Abdel-Halim S. M., Gross D. J., Clark A., Poitout V., Amaria R., Ostenson C. G. and Hutton J. C. (2002) Proinsulin processing in the diabetic Goto-Kakizaki rat. J. Endocrinol. 175, 637647.
  • Haass C., Lemere C. A., Capell A., Citron M., Seubert P., Schenk D., Lannfelt L. and Selkoe D. J. (1995) The Swedish mutation causes early-onset Alzheimer's disease by beta-secretase cleavage within the secretory pathway. Nat. Med. 1, 12911296.
  • Harper J. D., Lieber C. M. and Lansbury P. T., Jr (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chem. Biol. 4, 951959.
  • Hatcher N. G., Atkins N. J., Annangudi S. P., Forbes A. J., Kelleher N. L., Gillette M. U. and Sweedler J. V. (2008) Mass spectrometry-based discovery of circadian peptides. Proc. Natl Acad. Sci. USA 105, 1252712532.
  • Helwig M., Hoshino A., Berridge C., Lee S. N., Lorenzen N., Otzen D. E., Eriksen J. L. and Lindberg I. (2012) The neuroendocrine protein 7B2 suppresses the aggregation of neurodegenerative disease-related proteins. J. Biol. Chem. 288, 11141124.
  • Hu X., Crick S. L., Bu G., Frieden C., Pappu R. V. and Lee J. M. (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc. Natl Acad. Sci. USA 106, 2032420329.
  • Jahn H., Wittke S., Zurbig P., et al. (2011) Peptide fingerprinting of Alzheimer's disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS ONE 6, e26540.
  • Jankowsky J. L., Fadale D. J., Anderson J., et al. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159170.
  • Kikuchi K., Arawaka S., Koyama S., et al. (2003) An N-terminal fragment of ProSAAS (a granin-like neuroendocrine peptide precursor) is associated with tau inclusions in Pick's disease. Biochem. Biophys. Res. Commun. 308, 646654.
  • Lambert M. P., Barlow A. K., Chromy B. A., et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 64486453.
  • Lanoue E. and Day R. (2001) Coexpression of proprotein convertase SPC3 and the neuroendocrine precursor proSAAS. Endocrinology 142, 41414149.
  • Lee S. N. and Lindberg I. (2008) 7B2 prevents unfolding and aggregation of prohormone convertase 2. Endocrinology 149, 41164127.
  • Lin M. S., Chen L. Y., Tsai H. T., Wang S. S., Chang Y., Higuchi A. and Chen W. Y. (2008) Investigation of the mechanism of beta-amyloid fibril formation by kinetic and thermodynamic analyses. Langmuir 24, 58025808.
  • Liu X. D., Zeng B. F., Xu J. G., Zhu H. B. and Xia Q. C. (2006) Proteomic analysis of the cerebrospinal fluid of patients with lumbar disk herniation. Proteomics 6, 10191028.
  • Mannini B., Cascella R., Zampagni M., et al. (2012) Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proc. Natl Acad. Sci. USA 109, 1247912484.
  • Mohamed A. and Posse de Chaves E. (2011) Abeta internalization by neurons and glia. Int. J. Alzheimer's Dis. 2011, 127984.
  • Morgan D. J., Mzhavia N., Peng B., Pan H., Devi L. A. and Pintar J. E. (2005) Embryonic gene expression and pro-protein processing of proSAAS during rodent development. J. Neurochem. 93, 14541462.
  • Morgan D. J., Wei S., Gomes I., Czyzyk T., Mzhavia N., Pan H., Devi L. A., Fricker L. D. and Pintar J. E. (2010) The propeptide precursor proSAAS is involved in fetal neuropeptide processing and body weight regulation. J. Neurochem. 113, 12751284.
  • Mzhavia N., Qian Y., Feng Y., Che F. Y., Devi L. A. and Fricker L. D. (2002) Processing of proSAAS in neuroendocrine cell lines. Biochem. J. 361, 6776.
  • Qian Y., Devi L. A., Mzhavia N., Munzer S., Seidah N. G. and Fricker L. D. (2000) The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1. J. Biol. Chem. 275, 2359623601.
  • Rekas A., Adda C. G., Andrew Aquilina J., et al. (2004) Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. J. Mol. Biol. 340, 11671183.
  • Sayah M., Fortenberry Y., Cameron A. and Lindberg I. (2001) Tissue distribution and processing of proSAAS by proprotein convertases. J. Neurochem. 76, 18331841.
  • Shammas S. L., Waudby C. A., Wang S., et al. (2011) Binding of the molecular chaperone alphaB-crystallin to Abeta amyloid fibrils inhibits fibril elongation. Biophys. J . 101, 16811689.
  • Stine W. B., Jungbauer L., Yu C. and LaDu M. J. (2011) Preparing synthetic Abeta in different aggregation states. Methods Mol. Biol. 670, 1332.
  • Takuma K., Fang F., Zhang W., et al. (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc. Natl Acad. Sci. USA 106, 2002120026.
  • Terry R. D., Masliah E., Salmon D. P., Butters N., DeTeresa R., Hill R., Hansen L. A. and Katzman R. (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572580.
  • Volpicelli-Daley L. A., Luk K. C., Patel T. P., Tanik S. A., Riddle D. M., Stieber A., Meaney D. F., Trojanowski J. Q. and Lee V. M. (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 5771.
  • Wada M., Ren C. H., Koyama S., et al. (2004) A human granin-like neuroendocrine peptide precursor (proSAAS) immunoreactivity in tau inclusions of Alzheimer's disease and parkinsonism-dementia complex on Guam. Neurosci. Lett. 356, 4952.
  • Walsh D. M., Lomakin A., Benedek G. B., Condron M. M. and Teplow D. B. (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 2236422372.
  • Wardman J. H., Berezniuk I., Di S., Tasker J. G. and Fricker L. D. (2011) ProSAAS-derived peptides are colocalized with neuropeptide Y and function as neuropeptides in the regulation of food intake. PLoS ONE 6, e28152.
  • Yerbury J. J., Poon S., Meehan S., Thompson B., Kumita J. R., Dobson C. M. and Wilson M. R. (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 21, 23122322.