SEARCH

SEARCH BY CITATION

References

  • Alonso A., Sasin J., Bottini N., Friedberg I., Osterman A., Godzik A., Hunter T., Dixon J. and Mustelin T. (2004) Protein tyrosine phosphatases in the human genome. Cell 117, 699711.
  • Barr A. J., Ugochukwu E., Lee W. H. et al. (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136, 352363.
  • Baum M. L., Kurup P., Xu J. and Lombroso P. J. (2010) A STEP forward in neural function and degeneration. Commun. Integr. Biol. 3, 419422.
  • Chen M., Sun J. P., Liu J. and Yu X. (2010) Research progress of several protein tyrosine phosphatases in diabetes. Sheng Li Xue Bao 62, 179189.
  • Critton D. A., Tortajada A., Stetson G., Peti W. and Page R. (2008) Structural basis of substrate recognition by hematopoietic tyrosine phosphatase. Biochemistry 47, 1333613345.
  • Emsley P., Lohkamp B., Scott W. G. and Cowtan K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486501.
  • Eswaran J., von Kries J. P., Marsden B. et al. (2006) Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Biochem. J. 395, 483491.
  • Fitzpatrick C. J. and Lombroso P. J. (2011) The role of striatal-enriched protein tyrosine phosphatase (STEP) in cognition. Front. Neuroanat. 5, 47.
  • Francis D. M., Rozycki B., Koveal D., Hummer G., Page R. and Peti W. (2011a) Structural basis of p38alpha regulation by hematopoietic tyrosine phosphatase. Nat. Chem. Biol. 7, 916924.
  • Francis D. M., Rozycki B., Tortajada A., Hummer G., Peti W. and Page R. (2011b) Resting and active states of the ERK2:HePTP complex. J. Am. Chem. Soc. 133, 1713817141.
  • Francis D. M., Kumar G. S., Koveal D., Tortajada A., Page R. and Peti W. (2013) The differential regulation of p38alpha by the neuronal kinase interaction motif protein tyrosine phosphatases, a detailed molecular study. Structure 21, 16121623.
  • Hendriks W. J., Dilaver G., Noordman Y. E., Kremer B. and Fransen J. A. (2009) PTPRR protein tyrosine phosphatase isoforms and locomotion of vesicles and mice. Cerebellum 8, 8088.
  • Huang Z., Zhou B. and Zhang Z. Y. (2004) Molecular determinants of substrate recognition in hematopoietic protein-tyrosine phosphatase. J. Biol. Chem. 279, 5215052159.
  • Hunter T. (2009) Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21, 140146.
  • Kahsai A. W., Xiao K., Rajagopal S., Ahn S., Shukla A. K., Sun J., Oas T. G. and Lefkowitz R. J. (2011) Multiple ligand-specific conformations of the beta2-adrenergic receptor. Nat. Chem. Biol. 7, 692700.
  • Li R., Gong Z., Pan C. et al. (2013) PPM1A functions as an ERK phosphatase. FEBS J. 280, 27002711.
  • Liu S., Sun J. P., Zhou B. and Zhang Z. Y. (2006) Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc. Natl Acad. Sci. USA 103, 53265331.
  • Liu J., Chen M., Li R. et al. (2012a) Biochemical and functional studies of lymphoid-specific tyrosine phosphatase (Lyp) variants S201F and R266W. PLoS ONE 7, e43631.
  • Liu J. J., Horst R., Katritch V., Stevens R. C. and Wuthrich K. (2012b) Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335, 11061110.
  • Luechapanichkul R., Chen X., Taha H. A., Vyas S., Guan X., Freitas M. A., Hadad C. M. and Pei D. (2013) Specificity profiling of dual specificity phosphatase vaccinia VH1-related (VHR) reveals two distinct substrate binding modes. J. Biol. Chem. 288, 64986510.
  • Morooka T. and Nishida E. (1998) Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J. Biol. Chem. 273, 2428524288.
  • Munoz J. J., Tarrega C., Blanco-Aparicio C. and Pulido R. (2003) Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents. Biochem. J. 372, 193201.
  • Pan C., Liu H. D., Gong Z. et al. (2013) Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci. Rep. 3, 2333.
  • Patterson K. I., Brummer T., O'Brien P. M. and Daly R. J. (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J. 418, 475489.
  • Paul S., Snyder G. L., Yokakura H., Picciotto M. R., Nairn A. C. and Lombroso P. J. (2000) The Dopamine/D1 receptor mediates the phosphorylation and inactivation of the protein tyrosine phosphatase STEP via a PKA-dependent pathway. J. Neurosci. 20, 56305638.
  • Paul S., Nairn A. C., Wang P. and Lombroso P. J. (2003) NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 6, 3442.
  • Piserchio A., Francis D. M., Koveal D., Dalby K. N., Page R., Peti W. and Ghose R. (2012a) Docking interactions of hematopoietic tyrosine phosphatase with MAP kinases ERK2 and p38alpha. Biochemistry 51, 80478049.
  • Piserchio A., Francis D. M., Koveal D., Dalby K. N., Page R., Peti W. and Ghose R. (2012b) Docking Interactions of Hematopoietic Tyrosine Phosphatase with MAP Kinases ERK2 and p38alpha. Biochemistry 51, 80478049.
  • Poddar R., Deb I., Mukherjee S. and Paul S. (2010) NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death. J. Neurochem. 115, 13501362.
  • Pulido R., Zuniga A. and Ullrich A. (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 17, 73377350.
  • Ren J., Wen L., Gao X., Jin C., Xue Y. and Yao X. (2009) DOG 1.0: illustrator of protein domain structures. Cell Res. 19, 271273.
  • Salmeen A., Andersen J. N., Myers M. P., Tonks N. K. and Barford D. (2000) Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol. Cell 6, 14011412.
  • Sarmiento M., Zhao Y., Gordon S. J. and Zhang Z. Y. (1998) Molecular basis for substrate specificity of protein-tyrosine phosphatase 1B. J. Biol. Chem. 273, 2636826374.
  • Sarmiento M., Puius Y. A., Vetter S. W., Keng Y. F., Wu L., Zhao Y., Lawrence D. S., Almo S. C. and Zhang Z. Y. (2000) Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition. Biochemistry 39, 81718179.
  • Sharma E., Zhao F., Bult A. and Lombroso P. J. (1995) Identification of two alternatively spliced transcripts of STEP: a subfamily of brain-enriched protein tyrosine phosphatases. Brain Res. Mol. Brain Res. 32, 8793.
  • Sun J. P., Fedorov A. A., Lee S. Y., Guo X. L., Shen K., Lawrence D. S., Almo S. C. and Zhang Z. Y. (2003) Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor. J. Biol. Chem. 278, 1240612414.
  • Tonks N. K. (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833846.
  • Tonks N. K. (2013) Protein tyrosine phosphatases–from housekeeping enzymes to master regulators of signal transduction. FEBS J. 280, 346378.
  • Valjent E., Pascoli V., Svenningsson P. et al. (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl Acad. Sci. USA 102, 491496.
  • Venkitaramani D. V., Paul S., Zhang Y. et al. (2009) Knockout of striatal enriched protein tyrosine phosphatase in mice results in increased ERK1/2 phosphorylation. Synapse 63, 6981.
  • Venkitaramani D. V., Moura P. J., Picciotto M. R. and Lombroso P. J. (2011) Striatal-enriched protein tyrosine phosphatase (STEP) knockout mice have enhanced hippocampal memory. Eur. J. Neurosci. 33, 22882298.
  • Vetter S. W., Keng Y. F., Lawrence D. S. and Zhang Z. Y. (2000) Assessment of protein-tyrosine phosphatase 1B substrate specificity using “inverse alanine scanning”. J. Biol. Chem. 275, 22652268.
  • Wang W. Q., Sun J. P. and Zhang Z. Y. (2003) An overview of the protein tyrosine phosphatase superfamily. Curr. Top. Med. Chem. 3, 739748.
  • Webb M. R. (1992) A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc. Natl Acad. Sci. USA 89, 48844887.
  • Xu J., Kurup P., Bartos J. A., Patriarchi T., Hell J. W. and Lombroso P. J. (2012) Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J. Biol. Chem. 287, 2094220956.
  • Yu X., Sun J. P., He Y., Guo X., Liu S., Zhou B., Hudmon A. and Zhang Z. Y. (2007) Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc. Natl Acad. Sci. USA 104, 1976719772.
  • Yu X., Chen M., Zhang S. et al. (2011) Substrate specificity of lymphoid-specific tyrosine phosphatase (Lyp) and identification of Src kinase-associated protein of 55 kDa homolog (SKAP-HOM) as a Lyp substrate. J. Biol. Chem. 286, 3052630534.
  • Zhang Z. Y. (2003) Mechanistic studies on protein tyrosine phosphatases. Prog. Nucleic Acid Res. Mol. Biol. 73, 171220.
  • Zhang Y., Venkitaramani D. V., Gladding C. M., Kurup P., Molnar E., Collingridge G. L. and Lombroso P. J. (2008) The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J. Neurosci. 28, 1056110566.
  • Zhang Y. Y., Wu J. W. and Wang Z. X. (2011) Mitogen-activated protein kinase (MAPK) phosphatase 3-mediated cross-talk between MAPKs ERK2 and p38alpha. J. Biol. Chem. 286, 1615016162.
  • Zheng L. S., Zhang Y. Y., Wu J. W., Wu Z., Zhang Z. Y. and Wang Z. X. (2012) A continuous spectrophotometric assay for mitogen-activated protein kinase kinases. Anal. Biochem. 421, 191197.
  • Zhou B., Wang Z. X., Zhao Y., Brautigan D. L. and Zhang Z. Y. (2002) The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J. Biol. Chem. 277, 3181831825.
  • Zuniga A., Torres J., Ubeda J. and Pulido R. (1999) Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm. J. Biol. Chem. 274, 2190021907.