SEARCH

SEARCH BY CITATION

References

  • Aragona B. J., Cleaveland N. A., Stuber G. D., Day J. J., Carelli R. M. and Wightman R. M. (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J. Neurosci. 28, 88218831.
  • Berke J. D. and Hyman S. E. (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515532.
  • Borgland S. L., Malenka R. C. and Bonci A. (2004) Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J. Neurosci. 24, 74827490.
  • Brown P. L. and Kiyatkin E. A. (2006) The role of peripheral Na+ channels in triggering the central excitatory effects of intravenous cocaine. Eur. J. Neurosci. 24, 11821192.
  • Brown P. L. and Kiyatkin E. A. (2008) Sensory effects of intravenous cocaine on dopamine and non-dopamine ventral tegmental area neurons. Brain Res. 1218, 230249.
  • Di Chiara G. (1998) A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J. Psychopharmacol. 12, 5467.
  • Ferrario C. R., Shou M., Samaha A. N., Watson C. J., Kennedy R. T. and Robinson T. E. (2008) The rate of intravenous cocaine administration alters c-fos mRNA expression and the temporal dynamics of dopamine, but not glutamate, overflow in the striatum. Brain Res. 1209, 151156.
  • Gegelashvili G. and Schousboe A. (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res. Bull. 45, 233238.
  • Hemby S. E., Jones G. H., Hubert G. W., Neill D. B. and Justice J. B. (1994) Assessment of the relative contribution of peripheral and central components in cocaine place conditioning. Pharmacol. Biochem. Behav. 47, 973979.
  • Hendry S. C., Hsiao S. S. and Brown M. C. (1999) Fundamentals of sensory systems, in Fundamental Neuroscience, (Zigmond M. J., Landis S. C., Roberts J. L. and Squire L. R., eds.), pp. 657670. Academic Press, San Diego.
  • Hershey N. D. and Kennedy R. T. (2013) In vivo calibration of microdialysis using infusion of stable-isotope labeled neurotransmitters. ACS Chem. Neurosci. 4, 729736.
  • Hu Y., Mitchell K. M., Albahadily F. N., Michaelis E. K. and Wilson G. S. (1994) Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain Res. 659, 117125.
  • Hyman S. E., Malenka R. C. and Nestler E. J. (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565598.
  • Kalivas P. W. (2009) The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 10, 561572.
  • Kalivas P. W. and O'Brien C. (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33, 166180.
  • Kalivas P. W. and Stewart J. (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223244.
  • Kalivas P. W., Lalumiere R. T., Knackstedt L. and Shen H. (2009) Glutamate transmission in addiction. Neuropharmacology 56(Suppl 1), 169173.
  • Kanai Y. and Hediger M. A. (2003) The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur. J. Pharmacol. 479, 237247.
  • Kanai Y., Clemenson B., Simonin A., Leuenberger M., Lochner M., Weisstanner M. and Hegiger M. A. (2013) The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol. Aspects Med. 34, 108120.
  • Kiyatkin E. A. and Brown P. L. (2007) I.v. cocaine induces rapid, transient excitation of striatal neurons via its action on peripheral neural elements: single-cell, iontophoretic study in awake and anesthetized rats. Neuroscience 148, 978995.
  • Kiyatkin E. A. and Rebec G. V. (1999) Modulation of striatal neuronal activity by glutamate and GABA: iontophoresis in awake, unrestrained rats. Brain Res. 822, 88106.
  • Kiyatkin E. A. and Smirnov M. S. (2010) Rapid EEG desynchronization and EMG activation induced by intravenous cocaine in freely moving rats: a peripheral, nondopamine neural triggering. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R285R300.
  • Kiyatkin E. A., Kiyatkin D. E. and Rebec G. V. (2000) Phasic inhibition of dopamine uptake by intravenous cocaine in freely moving rats. Neuroscience 98, 729741.
  • Kiyatkin E. A., Wakabayashi K. T. and Lenoir M. (2013) Physiological fluctuations in brain temperature as a factor affecting electrochemical evaluations of extracellular glutamate and glucose in behavioral experiments. ACS Chem. Neurosci. 4, 652665.
  • Krnjevic K. (1970) Glutamate and gamma-aminobutyric acid in brain. Nature 228, 119124.
  • Kulagina N. V., Shankar L. and Michael A. C. (1999) Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal. Chem. 71, 50935100.
  • Lenoir M. and Kiyatkin E. A. (2011) Critical role of peripheral actions of intravenous nicotine in mediating its central effects. Neuropsychopharmacology 36, 21252138.
  • Lenoir M., Tang J. S., Woods A. S. and Kiyatkin E. A. (2013) Rapid sensitization of physiological, neuronal, and locomotor effects of nicotine: Critical role of peripheal drug actions. J. Neurosci. 33, 99379949.
  • Luscher C. and Malenka R. C. (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650663.
  • Mateo Y., Budygin E. A., Morgan D., Roberts D. C. and Jones S. R. (2004) Fast onset of dopamine uptake inhibition by intravenous cocaine. Eur. J. Neurosci. 10, 28382842.
  • Moussawi K., Riegel A., Nair S. and Kalivas P. W. (2011) Extracellular glutamate: functional compartments operate in different concentration ranges. Front Syst. Neurosci. 5, 94.
  • Nicholls D. and Attwell D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11, 462468.
  • Paxinos G. and Watson C. (1998) The rat brain in stereotaxic coordinates, 4th ed. Academic Press, San Diego.
  • Perry M., Li Q. and Kennedy R. T. (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal. Chim. Acta 653, 122.
  • Pickens R. and Thompson T. (1968) Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size. J. Pharmacol. Exp. Ther. 161, 122129.
  • Pierce R. C., Bell K., Duffy P. and Kalivas P. W. (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 15501560.
  • Pogun S., Scheffel U. and Kuhar M. J. (1991) Cocaine displaces [3H]WIN 35,428 binding to dopamine uptake sites in vivo more rapidly than mazindol or GBR 12909. Eur. J. Pharmacol. 198, 203205.
  • Ritz M. C., Lamb R. J., Goldberg S. R. and Kuhar M. J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 12191223.
  • Robinson T. E. and Berridge K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247291.
  • Robinson T. E. and Berridge K. C. (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2), S91S117.
  • Robinson T. E. and Kolb B. (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1), 346.
  • Sandler U. and Tsitolovsky L. (2008) Neural Cell Behavior and Fuzzy Logic, p. 478. Springer Science+Business Media, LLC., New York, NY.
  • Schmidt H. D. and Pierce R. C. (2010) Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann. N. Y. Acad. Sci. 1187, 3575.
  • Schultz W. (1998) Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 127.
  • Shriver D. A. and Long J. P. (1971) A pharmacologic comparison of some quaternary derivatives of cocaine. Arch. Int. Pharmacodyn. Ther. 189, 198208.
  • Skinner B. F. (1933) The abolishment of a discrimination. Proc. Natl Acad. Sci. USA 19, 825828.
  • Stancak A. (2006) Cortical oscillatory changes occurring during somatosensory and thermal stimulation. Prog. Brain Res. 159, 237252.
  • Stathis M., Scheffel U., Lever S. Z., Boja J. W., Carroll F. I. and Kuhar M. J. (1995) Rate of binding of various inhibitors at the dopamine transporter in vivo. Psychopharmacology 119, 376384.
  • Suto N., Ecke L. E., You Z. B. and Wise R. A. (2010) Extracellular fluctuations of dopamine and glutamate in the nucleus accumbens core and shell associated with lever-pressing during cocaine self-administration, extinction, and yoked cocaine administration. Psychopharmacology 211, 267275.
  • Tsibulsky V. L. and Norman A. B. (1999) Satiety threshold: a quantitative model of maintained cocaine self-administration. Brain Res. 839, 8593.
  • Ungless M. A., Whistler J. L., Malenka R. C. and Bonci A. (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583587.
  • Venton B. J., Robinson T. E. and Kennedy R. T. (2006) Transient changes in nucleus accumbens amino acid concentrations correlate with individual responsivity to the predator fox odor 2,5-dihydro-2,4,5-trimethylthiazoline. J. Neurochem. 96, 236246.
  • Vizi E. S., Fekete A., Karoly R. and Mike A. (2010) Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br. J. Pharmacol. 160, 785809.
  • Wakabayashi K. T. and Kiyatkin E. A. (2012) Rapid changes in extracellular glutamate induced by natural arousing stimuli and intravenous cocaine in the nucleus accumbens shell and core. J. Neurophysiol. 108, 285299.
  • Wang Z., Ordway G. A. and Woolverton W. (2007) Effects of cocaine on monoamine uptake as measured ex vivo. Neurosci. Lett. 413, 191195.
  • Wise R. A. and Bozarth M. A. (1987) A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469492.
  • You Z. B., Chen Y. Q. and Wise R. A. (2001) Dopamine and glutamate release in the nucleus accumbens and ventral tegmental area of rat following lateral hypothalamic self-stimulation. Neuroscience 107, 629639.
  • You Z. B., Wang B., Zitzman D., Azari S. and Wise R. A. (2007) A role for conditioned ventral tegmental glutamate release in cocaine seeking. J. Neurosci. 27, 1054610555.
  • van der Zeyden M., Oldenziel W. H., Rea K., Cremers T. I. and Westerink B. H. (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol. Biochem. Behav. 90, 135147.
  • Zito K. and Scheuss V. (2009) NMDA receptor function and physiological modulation, in Encyclopedia of Neuroscience (Squire L. R., ed.) Vol. 6, pp. 11571164. Academic Press, Oxford.