SEARCH

SEARCH BY CITATION

Keywords:

  • apoptosis;
  • cadmium;
  • Celastrol;
  • c-Jun N-terminal kinase;
  • mammalian target of rapamycin;
  • phosphatase and tensin homolog on chromosome 10

Abstract

Thumbnail image of graphical abstract

Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant-derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd-induced neurotoxicity. Here, we show that celastrol protected against Cd-induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd-induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase-3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd-induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over-expression of dominant negative c-Jun potentiated celastrol protection against Cd-induced cell death. Furthermore, pre-treatment with celastrol prevented Cd down-regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3′-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over-expression of wild-type PTEN enhanced celastrol inhibition of Cd-activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders.

Celastrol, a plant-derived triterpene, has shown neuroprotective effects. However, little is known regarding the effect of celastrol on cadmium (Cd) neurotoxicity. This study underscores that celastrol prevents Cd-induced neuronal apoptosis via inhibiting activation of JNK (c-Jun N-terminal kinase) and Akt/mTOR network. Celastrol suppresses Cd-activated Akt/mTOR pathway by elevating PTEN (phosphatase and tensin homolog). The findings suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders.