SEARCH

SEARCH BY CITATION

References

  • Adamo S. A. (2010) Why should an immune response activate the stress response? Insights from the insects (the cricket Gryllus texensis). Brain Behav. Immun. 24, 194200.
  • Balfanz S., Strünker T., Frings S. and Baumann A. (2005) A family of octapamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J. Neurochem. 93, 440451.
  • Bayliss A., Roselli G. and Evans P. D. (2013) A comparison of the signalling properties of two tyramine receptors from Drosophila. J. Neurochem. 125, 3748.
  • Beggs K. T., Tyndall J. D. A. and Mercer A. R. (2011) Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship. PLoS ONE 6, e26809.
  • Blenau W., Balfanz S. and Baumann A. (2000) Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J. Neurochem. 74, 900908.
  • Cazzamali G., Klaerke D. A. and Grimmelikhuijzen C. J. P. (2005) A new family of insect tyramine receptors. Biochem. Biophys. Res. Commun. 338, 11891196.
  • Chen X., Ohta H., Ozoe F., Miyazawa K., Huang J. and Ozoe Y. (2010) Functional and pharmacological characterization of a β-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 40, 476486.
  • Essam E. E. (2005) Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem. Mol. Biol. 35, 309321.
  • Evans P. D. and Maqueira B. (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert. Neurosci. 5, 111118.
  • Farooqui T. (2012) Review of octopamine in insect nervous systems. Open Access Insect Physiol. 4, 117.
  • Farooqui T., Robinson K., Vaessin H. and Smith B. H. (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J. Neurosci. 23, 53705380.
  • Ferguson S. S. G. (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 124.
  • Grohmann L., Blenau W., Erber J., Ebert P. R., Strünker T. and Baumann A. (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J. Neurochem. 86, 725735.
  • Han K. A., Millar N. S. and Davis R. L. (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J. Neurosci. 18, 36503658.
  • Han L., Li S., Liu P., Peng Y. and Hou M. (2012) New artificial diet for continuous rearing of Chilo suppressalis (Lepidoptera: Crambidae). Ann. Entomol. Soc. Am. 105, 253258.
  • Huang J., Ohta H., Inoue N., Takao H., Kita T., Ozoe F. and Ozoe Y. (2009) Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochem. Mol. Biol. 39, 842849.
  • Huang J., Hamasaki T. and Ozoe Y. (2010) Pharmacological characterization of a Bombyx mori α-adrenergic-like octopamine receptor stably expressed in a mammalian cell line. Arch. Insect Biochem. Physiol. 73, 7486.
  • Huang J., Wu S. F., Li X. H., Adamo S. A. and Ye G. Y. (2012) The characterization of a concentration-sensitive α-adrenergic-like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function. Brain Behav. Immun. 26, 942950.
  • Koon A. C., Ashley J., Barria R., DasGupta S., Brain R., Waddell S., Alkema M. J. and Budnik V. (2011) Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nat. Neurosci. 14, 190199.
  • Kozak M. (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 12, 857872.
  • Lind U., Alm Rosenblad M., Hasselberg Frank L. et al. (2010) Octopamine receptors from the barnacle Balanus improvisus are activated by the α2-adrenoceptor agonist medetomidine. Mol. Pharmacol. 78, 237248.
  • Maqueira B., Chatwin H. and Evans P. D. (2005) Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J. Neurochem. 94, 547560.
  • Mizunami M., Unoki S., Mori Y., Hirashima D., Hatano A. and Matsumoto Y. (2009) Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol. 7, 46.
  • Monastirioti M. (2003) Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol. 264, 3849.
  • Monastirioti M., Linn J., Charles E. and White K. (1996) Characterization of Drosophila tyramine β-hydroxylase gene and isolation of mutant flies lacking octopamine. J. Neurosci. 16, 39003911.
  • Ohta H., Utsumi T. and Ozoe Y. (2003) B96Bom encodes a Bombyx mori tyramine receptor negatively coupled to adenylate cyclase. Insect Mol. Biol. 12, 217223.
  • Ohtani A., Arai Y., Ozoe F. et al. (2006) Molecular cloning and heterologous expression of an α-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect Mol. Biol. 15, 763772.
  • Park Y. and Adams M.E. (2005) Insect G protein-coupled receptors: recent discoveries and implications, in Comprehensive Insect Biochemistry, Physiology, Pharmacology and Molecular Biology (Gilber L. I., Latrou K. and Gill S.S., eds.), Vol. 5, pp. 143171. Elsevier Press, London.
  • Poels J., Suner M. M., Needham M., Torfs H., De Rijck J., De Loof A., Dunbar S. J. and Vanden Broeck J. (2001) Functional expression of a locust tyramine receptor in murine erythroleukaemia cells. Insect Mol. Biol. 10, 541548.
  • Probst W. C., Snyder L. A., Schuster D. I., Brosius J. and Sealfon S. C. (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 11, 120.
  • Qanbar R. and Bouvier M. (2003) Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol. Ther. 97, 133.
  • Rader A. J., Anderson G., Isin B., Khorana H. G., Bahar I. and Klein-Seetharaman J. (2004) Identification of core amino acids stabilizing rhodopsin. Proc. Natl Acad. Sci. USA 101, 72467251.
  • Reale V., Hannan F., Hall L. M. and Evans P. D. (1997) Agonist-specific coupling of a cloned Drosophila melanogaster D1-like dopamine receptor to multiple second messenger pathways by synthetic agonists. J. Neurosci. 17, 65456553.
  • Robb S., Cheek T., Hannan F., Hall L., Midgley J. and Evans P. (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J. 13, 1325.
  • Roeder T. (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. Entomol. 50, 447477.
  • Roeder T., Degen J. and Gewecke M. (1998) Epinastine, a highly specific antagonist of insect neuronal octopamine receptors. Eur. J. Pharmacol. 349, 171177.
  • Rotte C., Krach C., Balfanz S., Baumann A., Walz B. and Blenau W. (2009) Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana). Neuroscience 162, 11201133.
  • Rovati G. E., Capra V. and Neubig R. R. (2007) The highly conserved DRY motif of class a G protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959964.
  • Saudou F., Amlaiky N., Plassat J. L., Borrelli E. and Hen R. (1990) Cloning and characterization of a Drosophila tyramine receptor. EMBO J. 9, 36113617.
  • Schwaerzel M., Monastirioti M., Scholz H., Friggi-Grelin F., Birman S. and Heisenberg M. (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 1049510502.
  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 27312739.
  • Unoki S., Matsumoto Y. and Mizunami M. (2005) Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study. Eur. J. Neurosci. 22, 14091416.
  • Usiello A., Baik J. H., Rouge Pont F., Picetti R., Dierich A., LeMeur M., Piazza P. V. and Borrelli E. (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408, 199203.
  • Verlinden H., Vleugels R., Marchal E., Badisco L., Pflüger H.-J., Blenau W. and Broeck J. V. (2010) The role of octopamine in locusts and other arthropods. J. Insect Physiol. 56, 854867.
  • Wu S. F., Yao Y., Huang J. and Ye G. Y. (2012) Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis). J. Exp. Biol. 215, 26462652.
  • Wu S. F., Huang J. and Ye G. Y. (2013) Molecular cloning and pharmacological characterisation of a tyramine receptor from the rice stem borer, Chilo suppressalis (Walker). Pest Manag. Sci. 69, 126134.
  • Zhou C., Rao Y. and Rao Y. (2008) A subset of octopaminergic neurons are important for Drosophila aggression. Nat. Neurosci. 11, 10591067.