SEARCH

SEARCH BY CITATION

References

  • Abe M. and Bonini N. M. (2013) MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol. 23, 3036.
  • Ariff I. M., Thounaojam M. C., Das S. and Basu A. (2013) Japanese encephalitis virus infection alters both neuronal and astrocytic differentiation of neural stem/progenitor cells. J. Neuroimmune Pharmacol. 8, 664676.
  • Balkhi M. Y., Iwenofu O. H., Bakkar N. et al. (2013) miR-29 acts as a decoy in sarcomas to protect the tumor suppressor A20 mRNA from degradation by HuR. Sci. Signal. 6, ra63.
  • Bandyopadhyay S., Friedman R. C., Marquez R. T. et al. (2011) Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. J. Infect. Dis. 203, 17531762.
  • Cannell I. G., Kong Y. W. and Bushell M. (2008) How do microRNAs regulate gene expression? Biochem. Soc. Trans. 36, 12241231.
  • Cardoso A. L., Guedes J. R., Pereira de Almeida L. and Pedroso de Lima M. C. (2012) miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 135, 7388.
  • Chang T. H., Liao C. L. and Lin Y. L. (2006) Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect. 8, 157171.
  • Chen T., Li Z., Tu J., Zhu W., Ge J., Zheng X., Yang L., Pan X., Yan H. and Zhu J. (2011) MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells. FEBS Lett. 585, 657663.
  • Coornaert B., Carpentier I. and Beyaert R. (2009) A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. 284, 82178221.
  • Dalal N. V., Pranski E. L., Tansey M. G., Lah J. J., Levey A. I. and Betarbet R. S. (2012) RNF11 modulates microglia activation through NF-kappaB signalling cascade. Neurosci. Lett. 528, 174179.
  • Das S., Dutta K., Kumawat K. L., Ghoshal A., Adhya D. and Basu A. (2011) Abrogated inflammatory response promotes neurogenesis in a murine model of Japanese encephalitis. PLoS ONE 6, e17225.
  • Fang J., Hao Q., Liu L., Li Y., Wu J., Huo X. and Zhu Y. (2012) Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection. J. Virol. 86, 10101020.
  • Ghosh D. and Basu A. (2009) Japanese encephalitis-a pathological and clinical perspective. PLoS Negl. Trop. Dis. 3, e437.
  • Ghoshal A., Das S., Ghosh S., Mishra M. K., Sharma V., Koli P., Sen E. and Basu A. (2007) Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55, 483496.
  • Graff J. W., Dickson A. M., Clay G., McCaffrey A. P. and Wilson M. E. (2012) Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem. 287, 2181621825.
  • Guedes J. (2013) Involvement of MicroRNA in microglia-mediated immune response. Clin. Dev. Immunol. 2013, 11.
  • He L. and Hannon G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522531.
  • Hill J. M., Zhao Y., Clement C., Neumann D. M. and Lukiw W. J. (2009) HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. NeuroReport 20, 15001505.
  • Hymowitz S. G. and Wertz I. E. (2010) A20: from ubiquitin editing to tumour suppression. Nat. Rev. Cancer 10, 332341.
  • Israël A. (2010) The IKK Complex, a central regulator of NF-κB activation. Cold Spring Harb. Perspect. Biol. 2, a000158.
  • Kaushik D. K. and Basu A. (2013) Microglial activation: measurement of cytokines by flow cytometry. Methods Mol. Biol. 1041, 7182.
  • Kaushik D. K., Gupta M., Das S. and Basu A. (2010) Kruppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J. Neuroinflammation. 7, 68.
  • Kaushik D. K., Gupta M., Kumawat K. L. and Basu A. (2012) NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS ONE 7, e32270.
  • Kriegel A. J., Liu Y., Fang Y., Ding X. and Liang M. (2012) The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genomics 44, 237244.
  • Lai T. Y., Wu S. D., Tsai M. H., Chuang E. Y., Chuang L. L., Hsu L. C. and Lai L. C. (2013) Transcription of Tnfaip3 is regulated by NF-kappaB and p38 via C/EBPbeta in activated macrophages. PLoS ONE 8, e73153.
  • Lau F. C., Joseph J. A., McDonald J. E. and Kalt W. (2009) Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-KB activation. J. Funct. Foods 1, 274283.
  • Lytle J. R., Yario T. A. and Steitz J. A. (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl Acad. Sci. USA 104, 96679672.
  • Ma F., Xu S., Liu X., Zhang Q., Xu X., Liu M., Hua M., Li N., Yao H. and Cao X. (2011) The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat. Immunol. 12, 861869.
  • Mishra M. K. and Basu A. (2008) Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. J. Neurochem. 105, 15821595.
  • Mishra R., Chhatbar C. and Singh S. K. (2012) HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia. J. Neuroinflammation. 9, 131.
  • Nazmi A., Dutta K. and Basu A. (2011) RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS ONE 6, e21761.
  • Nazmi A., Mukhopadhyay R., Dutta K. and Basu A. (2012) STING mediates neuronal innate immune response following Japanese encephalitis virus infection. Sci. Rep. 2, 347.
  • Oeckinghaus A., Hayden M. S. and Ghosh S. (2011) Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 12, 695708.
  • Olajide O. A., Bhatia H. S., de Oliveira A. C., Wright C. W. and Fiebich B. L. (2013) Inhibition of neuroinflammation in LPS-activated microglia by cryptolepine. Evid. Based Complement. Alternat. Med. 2013, 459723.
  • Pillai R. S. (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11, 17531761.
  • Ponomarev E. D., Veremeyko T., Barteneva N., Krichevsky A. M. and Weiner H. L. (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat. Med. 17, 6470.
  • Ponomarev E. D., Veremeyko T. and Weiner H. L. (2013) MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 61, 91103.
  • Sehgal N., Kumawat K. L., Basu A. and Ravindranath V. (2012) Fenofibrate reduces mortality and precludes neurological deficits in survivors in murine model of Japanese encephalitis viral infection. PLoS ONE 7, e35427.
  • Sisk J. M., Witwer K. W., Tarwater P. M. and Clements J. E. (2013) SIV replication is directly downregulated by four antiviral miRNAs. Retrovirology 10, 95.
  • Solomon T., Ni H., Beasley D. W., Ekkelenkamp M., Cardosa M. J. and Barrett A. D. (2003) Origin and evolution of Japanese encephalitis virus in southeast Asia. J. Virol. 77, 30913098.
  • Sonntag K. C. (2010) MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res. 1338, 4857.
  • Tak P. P. and Firestein G. S. (2001) NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107, 711.
  • Thongtan T., Cheepsunthorn P., Chaiworakul V., Rattanarungsan C., Wikan N. and Smith D. R. (2010) Highly permissive infection of microglial cells by Japanese encephalitis virus: a possible role as a viral reservoir. Microbes Infect. 12, 3745.
  • Thounaojam M. C., Kaushik D. K. and Basu A. (2013) MicroRNAs in the brain: it's regulatory role in neuroinflammation. Mol. Neurobiol. 47, 10341044.
  • Tu Y. C., Yu C. Y., Liang J. J., Lin E., Liao C. L. and Lin Y. L. (2012) Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. J. Virol. 86, 1034710358.
  • Upadhyay R. K. (2013) Japanese encephalitis virus generated neurovirulence, antigenicity, and host immune responses. ISRN Virol. 2013, 24.
  • Vereecke L., Beyaert R. and van Loo G. (2009) The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 383391.
  • Verstrepen L., Verhelst K., van Loo G., Carpentier I., Ley S. C. and Beyaert R. (2010) Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochem. Pharmacol. 80, 20092020.
  • Vrati S., Agarwal V., Malik P., Wani S. A. and Saini M. (1999) Molecular characterization of an Indian isolate of Japanese encephalitis virus that shows an extended lag phase during growth. J. Gen. Virol. 80, 16651671.
  • Wang J., Guo Y., Chu H., Guan Y., Bi J. and Wang B. (2013) Multiple Functions of the RNA-Binding Protein HuR in Cancer Progression, Treatment Responses and Prognosis. Int. J. Mol. Sci. 14, 1001510041.
  • Yamamoto Y. and Gaynor R. B. (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107, 135142.