SEARCH

SEARCH BY CITATION

References

  • Abushik P. A., Sibarov D. A., Eaton M. J., Skatchkov S. N. and Antonov S. M. (2013) Kainate-induced calcium overload of cortical neurons in vitro: dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium 54, 95104.
  • Alagarsamy S., Rouse S. T., Junge C., Hubert G. W., Gutman D., Smith Y. and Conn P. J. (2002) NMDA-induced phosphorylation and regulation of mGluR5. Pharmacol. Biochem. Behav. 73, 299306.
  • Ayata C. and Moskowitz M. A. (2006) Cortical spreading depression confounds concentration-dependent pial arteriolar dilation during N-methyl-D-aspartate superfusion. Am. J. Physiol. Heart Circ. Physiol. 290, H1837H1841.
  • Beard R. S., Jr, Reynolds J. J. and Bearden S. E. (2012) Metabotropic glutamate receptor 5 mediates phosphorylation of vascular endothelial cadherin and nuclear localization of β-catenin in response to homocysteine. Vascul. Pharmacol. 56, 159167.
  • Benz B., Grima G. and Do K. Q. (2004) Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling. Neuroscience 124, 377386.
  • Carlton S. M. (2001) Peripheral excitatory amino acids. Curr. Opin. Pharmacol. 1, 5256.
  • Ceruti S., Fumagalli M., Villa G., Verderio C. and Abbracchio M. P. (2008) Purinoceptor-mediated calcium signaling in primary neuron–glia trigeminal cultures. Cell Calcium 43, 576590.
  • Chauvel V., Vamos E., Pardutz A., Vecsei L., Schoenen J. and Multon S. (2012) Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp. Neurol. 236, 207214.
  • Choi D. W. (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 5860.
  • Davies A. J., Kim Y. H. and Oh S. B. (2010) Painful neuron-microglia interactions in the trigeminal sensory system. Open Pain J. 3, 1428.
  • Duchen M. R. (2012) Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch. 464, 111121.
  • Durham P. L. and Garrett F. G. (2010) Emerging importance of neuron-satellite glia trigeminal ganglia in craniofacial pain. Open Pain J. 3, 313.
  • Feldman E. (2004) Thiobarbituric acid reactive substances (TBARS) assay. AMDCC Protocols Version 1, 13.
  • Ganapathy P. S., White R. E., Ha Y., Bozard B. R., McNeil P. L., Caldwell R. W., Kumar S., Black S. M. and Smith S. B. (2011) The role of N-methyl-D-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 52, 55155524.
  • Giniatullin R., Nistri A. and Fabbretti E. (2008) Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF. Mol. Neurobiol. 37, 8390.
  • Gu Y., Chen Y., Zhang X., Li G. W., Wang C. and Huang L. Y. (2010) Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. Neuron Glia Biol. 6, 5362.
  • Heidenreich D. J. and Brauer P. R. (2008) Homocysteine enhances cardiac neural crest cell attachment in vitro by increasing intracellular calcium levels. Dev. Dyn. 237, 21172128.
  • Hering-Hanit R., Gadoth N., Yavetz A., Gavendo S. and Sela B. (2001) Is blood homocysteine elevated in migraine? Headache 41, 779781.
  • Isobe C. and Terayama Y. (2010) A remarkable increase in total homocysteine concentrations in the CSF of migraine patients with aura. Headache 50, 15611569.
  • Jara-Prado A., Ortega-Vazquez A., Martinez-Ruano L., Rios C. and Santamaria A. (2003) Homocysteine–induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox. Res. 5, 237243.
  • Jasmin L., Vit J. P., Bhargava A. and Ohara P. T. (2010) Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol. 6, 6371.
  • Johnson J. W. and Ascher P. (1992) Equilibrium and kinetic study of glycine action on the N-methyl-D-aspartate receptor in cultured mouse brain neurons. J. Physiol. 455, 339365.
  • Kim W. K. and Pae Y. S. (1996) Involvement of N-methyl-D-aspartate receptor and free radical in homocysteine-mediated toxicity on rat cerebellar granule cells in culture. Neurosci. Lett. 216, 117120.
  • Kruman I. I., Culmsee C., Chan S. L., Kruman Y., Guo Z., Penix L. and Mattson M. P. (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20, 69206926.
  • Kruman I. I., Kumaravel T. S., Lohani A., Pedersen W. A., Cutler R. G., Kruman Y., Haughney N., Lee J., Evans M. and Mattson M. P. (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in animal models of Alzheimer's disease. J. Neurosci. 22, 17521762.
  • Kuhn W., Hummel T., Woitalla D. and Muller T. (2001) Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology 56, 281282.
  • Lakhan S. E., Avramut M. and Tepper S. J. (2013) Structural and functional neuroimaging in migraine: insights from 3 decades of research. Headache 53, 4666.
  • Lea P. M., Custer S. J., Vicini S. and Faden A. I. (2002) Neuronal and glial mGluR5 modulation prevents stretch–induced enhancement of NMDA receptor current. Pharmacol. Biochem. Behav. 73, 287298.
  • Lea R., Colson N., Quinlan S., Macmillan J. and Griffiths L. (2009) The effects of vitamin supplementation and MTHFR (C677T) genotype on homocysteine-lowering and migraine disability. Pharmacogenet. Genomics 19, 422428.
  • Lee J. S. and Ro J. Y. (2007) Peripheral metabotropic glutamate receptor 5 mediates mechanical hypersensitivity in craniofacial muscle via protein kinase C dependent mechanisms. Neuroscience 146, 375383.
  • Lipton S. A., Kim W. K., Choi Y. B., Kumar S., D'Emilia D. M., Rayuda P. V., Arnelle D. R. and Stamler J. S. (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA 94, 59235928.
  • Loureiro S. O., Romão L., Alves T., Fonseca A., Heimfarth L., Moura Neto V., Wyse A. T. and   Pessoa–Pureur R. (2010) Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes. Brain Res. 1355, 151164.
  • Lu S. C. (2009) Regulation of glutathione synthesis. Mol. Aspects Med. 30, 4259.
  • Malin S. A., Davis B. M. and Molliver D. C. (2007) Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat. Protoc. 2, 15260.
  • Matta J. A., Ashby M. C., Sanz-Clemente A., Roche K. W. and Isaac J. T. (2011) mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. Neuron 70, 339351.
  • Matte C., Monteiro S. C., Calcagnotto T., Bavaresco C. S., Netto C. A. and Wyse A. T. (2004) In vivo and in vitro effects of homocysteine on Na+, K + -ATPase activity in parietal, prefrontal and cingulate cortex of young rats. Int. J. Dev. Neurosci. 22, 185190.
  • Messlinger K. (2009) Migraine: where and how does the pain originate? Exp. Brain Res. 196, 179193.
  • Mironova E. V., Evstratova A. A. and Antonov S. M. (2007) A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J. Neurosci. Methods 163, 18.
  • Moschiano F., D'Amico D., Usai S., Grazzi L., Di Stefano M., Ciusani E., Erba N. and Bussone G. (2008) Homocysteine plasma levels in patients with migraine with aura. Neurol. Sci. 29, 173175.
  • Moskowitz M. A. (2007) Genes, proteases, cortical spreading depression and migraine: impact on pathophysiology and treatment. Funct. Neurol. 22, 133136.
  • Mujumdar V. S., Hayden M. R. and Tyagi S. C. (2000) Homocysteine induces calcium second messenger in vascular smooth muscle cells. J. Cell. Physiol. 183, 2836.
  • Nanou E., Kyriakatos A., Kettunen P. and El Manira A. (2009) Separate signalling mechanisms underlie mGluR1 modulation of leak channels and NMDA receptors in the network underlying locomotion. J. Physiol. 587, 30013008.
  • Oterino A., Toriello M., Valle N., Castillo J., Alonso-Arranz A., Bravo Y., Ruiz-Alegria C., Quintela E. and Pascual J. (2010) The relationship between homocysteine and genes of folate–related enzymes in migraine patients. Headache 50, 99168.
  • Outinen P. A., Sood S. K., Liaw P. C. Y., Sarge K. D., Maeda N., Hirsh J., Ribau J., Podor T. J., Weitz J. I. and Austin R. C. (1998) Characterization of the stress-inducing effects of homocysteine. Biochem. J. 332, 213221.
  • Parpura V. and Verkhratsky A. (2013) Astroglial amino acid–based transmitter receptors. Amino Acids 44, 11511158.
  • Peeters M., Gunthorpe M. J., Strijbos P. J., Goldsmith P., Upton N. and James M. F. (2007) Effects of pan- and subtype-selective N-methyl-D-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J. Pharmacol. Exp. Ther. 321, 564572.
  • Perna A. F., Ingrosso D. and De Santo N. G. (2003) Homocysteine and oxidative stress. Amino Acids 25, 409417.
  • Pietrobon D. and Moskowitz M. A. (2013) Pathophysiology of migraine. Annu. Rev. Physiol. 75, 365391.
  • Poddar R. and Paul S. (2013) Novel crosstalk between ERK MAPK and p38 MAPK leads to homocysteine-NMDA receptor-mediated neuronal cell death. J. Neurochem. 124, 558570.
  • Reyes R. C., Brennan A. M., Shen Y., Baldwin Y. and Swanson R. A. (2012) Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes. J. Neurosci. 32, 1297312978.
  • Sachdev P. S. (2005) Homocysteine and brain atrophy. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 11521161.
  • Sergeeva I. A., Makhro A. V., Pegova A. N. and Bulygina E. R. (2010) The effects of homocysteine and homocysteic acid on the metabotropic glutamate receptors of cerebellar neurons. J. Neurochem. 4, 116121.
  • Shatillo A., Koroleva K., Giniatullina R. et al. (2013) Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 253, 341349.
  • Shi Q., Savage J. E., Hufeisen S. J., Rauser L., Grajkowska E., Ernsberger P., Wroblewski J. T., Nadeau J. H. and Roth B. L. (2003) L-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J. Pharmacol. Exp. Ther. 305, 131142.
  • Sibarov D. A., Bolshakov A. E., Abushik P. A., Krivoi I. I. and Antonov S. M. (2012) Na+, K+-ATPase functionally interacts with the plasma membrane Na+, Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 343, 596607.
  • Sibrian-Vazquez M., Escobedo J. O., Lim S., Samoei G. K. and Strongin R. M. (2010) Homocystamides promote free-radical and oxidative damage to proteins. Proc. Natl Acad. Sci. USA 107, 551554.
  • Simonetti M., Fabbro A., D'Arco M., Zweyer M., Nistri A., Giniatullin R. and Fabbretti E. (2006) Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin. Mol. Pain 2, 11.
  • Stout A. K., Raphael H. M., Kanterewicz B. I., Klann E. and Reynolds I. J. (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat. Neurosci. 1, 366373.
  • Suadicani S. O., Cherkas P. S., Zuckerman J., Smith D. N., Spray D. C. and Hanani M. (2010) Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol. 6, 4351.
  • Sylantyev S., Savtchenko L. P., Ermolyuk Y., Michaluk P. and Rusakov D. A. (2013) Spike-driven glutamate electrodiffusion triggers synaptic potentiation via a homer-dependent mGluR-NMDAR link. Neuron 77, 528541.
  • Takano T., Tian G. F., Peng W., Lou N., Lovatt D., Hansen A. J., Kasischke K. A. and Nedergaard M. (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat. Neurosci. 10, 754762.
  • Tenneti L., D'Emilia D. M., Troy C. M. and Lipton S. A. (1998) Role of caspases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 71, 946959.
  • Tsuda M., Beggs S., Salter M. W. and Inoue K. (2013) Microglia and intractable chronic pain. Glia 61, 5561.
  • Turman J. E., Jr, Lee O. K. and Chandler S. H. (2002) Differential NR2A and NR2B expression between trigeminal neurons during early postnatal development. Synapse 44, 7685.
  • Yeganeh F., Nikbakht F., Bahmanpour S., Rastegar K. and Namavar R. (2013) Neuroprotective effects of NMDA and group I metabotropic glutamate receptor antagonists against neurodegeneration induced by homocysteine in rat hippocampus: in vivo study. J. Mol. Neurosci. 50, 551557.
  • Yu S. P., Sensi S. L., Canzoniero L. M., Buisson A. and Choi D. W. (1997) Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J. Physiol. 499, 721732.
  • Zhang L., Rzigalinski B. A., Ellis E. F. and Satin L. S. (1996) Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science 274, 19211923.
  • Zhou Q. and Sheng M. (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74, 6975.
  • Ziemińska E., Stafiej A. and Łazarewicz J. W. (2003) Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurones. Neurochem. Int. 43, 481492.
  • Zoccolella S., Bendotti C., Beghi E. and Logroscino G. (2010) Homocysteine levels and amyotrophic lateral sclerosis: a possible link. Amyotroph. Lateral Scler. 11, 140147.