SEARCH

SEARCH BY CITATION

References

  • Adler R. (1990) Preparation, enrichment and growth of purified cultures of neurons and photoreceptors from chick embryos and from normal and mutant mice, in Methods in Neuroscience, vol. 2, (Conn P. M., ed.), pp. 134150. Academic Press, San Diego.
  • Akimoto M., Cheng H., Zhu D. et al. (2006) Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc. Natl Acad. Sci. USA 103, 38903895.
  • Akopian A. and Witkovsky P. (2002) Calcium and retinal function. Mol. Neurobiol. 25, 113132.
  • Albini A., Noonan D. M., Melchiori A., Fassina G. F., Percario M., Gentleman S., Toffenetti J. and Chader G. J. (1992) Laminin-induced retinoblastoma cell differentiation: possible involvement of a 100-kDa cell-surface laminin-binding protein. Proc. Natl Acad. Sci. USA 89, 22572261.
  • Alnawaiseh M., Albanna W., Chen C. C., Campbell K. P., Hescheler J., Lüke M. and Schneider T. (2011) Two separate Ni(2+) -sensitive voltage-gated Ca(2+) channels modulate transretinal signalling in the isolated murine retina. Acta Ophthalmol. 89, e579e590.
  • Barrow A. J. and Wu S. M. (2009) Low-conductance HCN1 ion channels augment the frequency response of rod and cone photoreceptors. J. Neurosci. 29, 58415853.
  • Belecky-Adams T., Cook B. and Adler R. (1996) Correlations between terminal mitosis and differentiated fate of retinal precursor cells in vivo and in vitro: analysis with the “window-labeling” technique. Dev. Biol. 178, 304315.
  • Bender R. A. and Baram T. Z. (2008) Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog. Neurobiol. 86, 129140.
  • Bernard M., Donohue S. J. and Klein D. C. (1995) Human hydroxyindole-O-methyltransferase in pineal gland, retina and Y79 retinoblastoma cells. Brain Res. 696, 3748.
  • Bernard M., Voisin P. and Klein D. C. (1996) Hydroxyindole-O-methyltransferase in Y-79 cells: regulation by serum. Brain Res. 727, 118124.
  • Biel M., Wahl-Schott C., Michalakis S. and Zong X. (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847885.
  • Blankenship A. G. and Feller M. B. (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 1829.
  • Bois P., Renaudon B., Baruscotti M., Lenfant J. and DiFrancesco D. (1997) Activation of f-channels by cAMP analogues in macropatches from rabbit sino-atrial node myocytes. J. Physiol. 501, 565571.
  • Bootman M. D., Collins T. J., Mackenzie L., Roderick H. L., Berridge M. J. and Peppiatt C. M. (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J. 16, 11451150.
  • Bringmann A., Schopf S. and Reichenbach A. (2000) Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells. J. Neurophysiol. 84, 29752983.
  • Bruhn S. L. and Cepko C. L. (1996) Development of the pattern of photoreceptors in the chick retina. J. Neurosci. 16, 14301439.
  • Cailleau V., Bernard M., Morin F., Guerlotte J. and Voisin P. (2005) Differential regulation of melatonin synthesis genes and phototransduction genes in embryonic chicken retina and cultured retinal precursor cells. Mol. Vis. 11, 472481.
  • Catsicas M., Bonness V., Becker D. and Mobbs P. (1998) Spontaneous Ca2+ transients and their transmission in the developing chick retina. Curr. Biol. 8, 283286.
  • Catterall W. A., Perez-Reyes E., Snutch T. P. and Striessnig J. (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411425.
  • Cepko C. L., Austin C. P., Yang X., Alexiades M. and Ezzeddine D. (1996) Cell fate determination in the vertebrate retina. Proc. Natl Acad. Sci. USA 93, 589595.
  • Chemin J., Nargeot J. and Lory P. (2002) Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line. J. Neurosci. 22, 68566862.
  • Cherubini E., Griguoli M., Safiulina V. and Lagostena L. (2011) The depolarizing action of GABA controls early network activity in the developing hippocampus. Mol. Neurobiol. 43, 97106.
  • Dash P. K., Karl K. A., Colicos M. A., Prywes R. and Kandel E. R. (1991) cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc. Natl Acad. Sci. USA 88, 50615065.
  • Davies S. P., Reddy H., Caivano M. and Cohen P. (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95105.
  • Della Santina L., Bouly M., Asta A., Demontis G. C., Cervetto L. and Gargini C. (2010) Effect of HCN channel inhibition on retinal morphology and function in normal and dystrophic rodents. Invest. Ophthalmol. Vis. Sci. 51, 10161023.
  • Della Santina L., Piano I., Cangiano L., Caputo A., Ludwig A., Cervetto L. and Gargini C. (2012) Processing of retinal signals in normal and HCN deficient mice. PLoS ONE 7, e29812.
  • Demontis G. C., Moroni A., Gravante B., Altomare C., Longoni B., Cervetto L. and DiFrancesco D. (2002) Functional characterisation and subcellular localisation of HCN1 channels in rabbit retinal rod photoreceptors. J. Physiol. 542, 8997.
  • DiFrancesco D. (2010) The role of the funny current in pacemaker activity. Circ. Res. 106, 434446.
  • D'Souza T. and Dryer S. E. (1994) Intracellular free Ca2+ in dissociated cells of the chick pineal gland: regulation by membrane depolarization, second messengers and neuromodulators, and evidence for release of intracellular Ca2+ stores. Brain Res. 656, 8594.
  • Dunn T. A., Wang C. T., Colicos M. A., Zaccolo M., DiPilato L. M., Zhang J., Tsien R. Y. and Feller M. B. (2006) Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J. Neurosci. 26, 1280712815.
  • Er F., Larbig R., Ludwig A., Biel M., Hofmann F., Beuckelmann D. J. and Hoppe U. C. (2003) Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes. Circulation 107, 485489.
  • Firth S. I. and Feller M. B. (2006) Dissociated GABAergic retinal interneurons exhibit spontaneous increases in intracellular calcium. Vis. Neurosci. 23, 807814.
  • Firth S. I., Wang C. T. and Feller M. B. (2005) Retinal waves: mechanisms and function in visual system development. Cell Calcium 37, 425432.
  • Forrest D. and Swaroop A. (2012) Minireview: the role of nuclear receptors in photoreceptor differentiation and disease. Mol. Endocrinol. 26, 905915.
  • Gargett C. E. and Wiley J. S. (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br. J. Pharmacol. 120, 14831490.
  • Gleason E., Mobbs P., Nuccitelli R. and Wilson M. (1992) Development of functional calcium channels in cultured avian photoreceptors. Vis. Neurosci. 8, 315327.
  • Gonoi T. and Hasegawa S. (1988) Post-natal disappearance of transient calcium channels in mouse skeletal muscle: effects of denervation and culture. J. Physiol. 401, 617637.
  • Gu X. and Spitzer N. C. (1993) Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J. Neurosci. 13, 49364948.
  • Gu X., Olson E. C. and Spitzer N. C. (1994) Spontaneous neuronal calcium spikes and waves during early differentiation. J. Neurosci. 14, 63256335.
  • Harris N. C. and Constanti A. (1995) Mechanism of block by ZD 7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro. J. Neurophysiol. 74, 23662378.
  • Hirooka K., Bertolesi G. E., Kelly M. E., Denovan-Wright E. M., Sun X., Hamid J., Zamponi G. W., Juhasz A. E., Haynes L. W. and Barnes S. (2002) T-Type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J. Neurophysiol. 88, 196205.
  • Holliday J. and Spitzer N. C. (1990) Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. Dev. Biol. 141, 1323.
  • Hu H. Z., Gu Q., Wang C., Colton C. K., Tang J., Kinoshita-Kawada M., Lee L. Y., Wood J. D. and Zhu M. X. (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem. 279, 3574135748.
  • Knop G. C., Seeliger M. W., Thiel F., Mataruga A., Kaupp U. B., Friedburg C., Tanimoto N. and Müller F. (2008) Light responses in the mouse retina are prolonged upon targeted deletion of the HCN1 channel gene. Eur. J. Neurosci. 28, 22212230.
  • Ko M. L., Liu Y., Dryer S. E. and Ko G. Y. (2007) The expression of L-type voltage-gated calcium channels in retinal photoreceptors is under circadian control. J. Neurochem. 103, 784792.
  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • Lee J. H., Gomora J. C., Cribbs L. L. and Perez-Reyes E. (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys. J. 77, 30343042.
  • Levic S., Nie L., Tuteja D., Harvey M., Sokolowski B. H. and Yamoah E. N. (2007) Development and regeneration of hair cells share common functional features. Proc. Natl. Acad. Sci. U. S. A. 104, 1910819113.
  • Levine E. M., Fuhrmann S. and Reh T. A. (2000) Soluble factors and the development of rod photoreceptors. Cell. Mol. Life Sci. 57, 224234.
  • Maruyama T., Kanaji T., Nakade S., Kanno T. and Mikoshiba K. (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J. Biochem. 122, 498505.
  • McCobb D. P., Best P. M. and Beam K. G. (1989) Development alters the expression of calcium currents in chick limb motoneurons. Neuron 2, 16331643.
  • Mehrke G., Zong X. G., Flockerzi V. and Hofmann F. (1994) The Ca(++)-channel blocker Ro 40-5967 blocks differently T-type and L-type Ca++ channels. J. Pharmacol. Exp. Ther. 271, 14831488.
  • Montana C. L., Kolesnikov A. V., Shen S. Q., Myers C. A., Kefalov V. J. and Corbo J. C. (2013) Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc. Natl. Acad. Sci. U. S. A. 110, 17321737.
  • Moosmang S., Stieber J., Zong X., Biel M., Hofmann F. and Ludwig A. (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur. J. Biochem. 268, 16461652.
  • Morris V. B. and Shorey C. D. (1967) An electron microscope study of types of receptor in the chick retina. J. Comp. Neurol. 129, 313340.
  • Newcomb R., Szoke B., Palma A. et al. (1998) Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 37, 1535315362.
  • Nicol X., Bennis M., Ishikawa Y., Chan G. C., Repérant J., Storm D. R. and Gaspar P. (2006) Role of the calcium modulated cyclases in the development of the retinal projections. Eur. J. Neurosci. 24, 34013414.
  • Nicol X., Voyatzis S., Muzerelle A., Narboux-Nême N., Südhof T. C., Miles R. and Gaspar P. (2007) cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat. Neurosci. 10, 340347.
  • Randall A. D. and Tsien R. W. (1997) Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology 36, 879893.
  • Robinson R. B. and Siegelbaum S. A. (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65, 453480.
  • Rosenberg S. S. and Spitzer N. C. (2011) Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, a004259.
  • Schmid S. and Guenther E. (1999) Voltage-activated calcium currents in rat retinal ganglion cells in situ: changes during prenatal and postnatal development. J. Neurosci. 19, 34863494.
  • Sheng M., Thompson M. A. and Greenberg M. E. (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 14271430.
  • Sumi M., Kiuchi K., Ishikawa T., Ishii A., Hagiwara M., Nagatsu T. and Hidaka H. (1991) The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12 h cells. Biochem. Biophys. Res. Commun. 181, 968975.
  • Swaroop A., Kim D. and Forrest D. (2010) Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 11, 563576.
  • Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M. and Hidaka H. (1990) KN-62, 1-[N, O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 265, 43154320.
  • Tombes R. M., Grant S., Westin E. H. and Krystal G. (1995) G1 cell cycle arrest and apoptosis are induced in NIH 3T3 cells by KN-93, an inhibitor of CaMK-II (the multifunctional Ca2+/CaM kinase). Cell Growth Differ. 6, 10631070.
  • Torborg C. L. and Feller M. B. (2005) Spontaneous patterned retinal activity and the refinement of retinal projections. Prog. Neurobiol. 76, 213235.
  • Treisman J. E., Morabito M. A. and Barnstable C. J. (1988) Opsin expression in the rat retina is developmentally regulated by transcriptional activation. Mol. Cell. Biol. 8, 15701579.
  • Uchida K. and Iuvone P. M. (1999) Intracellular Ca2+ concentrations in cultured chicken photoreceptor cells: sustained elevation in depolarized cells and the role of dihydropyridine-sensitive Ca2+ channels. Mol. Vis. 5, 1.
  • Voisin P. and Bernard M. (2009) Cyclic AMP-dependent activation of rhodopsin gene transcription in cultured retinal precursor cells of chicken embryo. J. Neurochem. 110, 318327.
  • Voisin P., Cailleau V., Naud N., Cantereau A. and Bernard M. (2012) Visual photoreceptor subtypes in the chicken retina: melatonin-synthesizing activity and in vitro differentiation. Cell Tissue Res. 348, 417427.
  • Weiergräber M., Henry M., Südkamp M., de Vivie E. R., Hescheler J. and Schneider T. (2005) Ablation of Ca(v)2.3/E-type voltage-gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Res. Cardiol. 100, 113.
  • Wong W. T., Sanes J. R. and Wong R. O. (1998) Developmentally regulated spontaneous activity in the embryonic chick retina. J. Neurosci. 18, 88398852.
  • Xiang Z., Thompson A. D., Brogan J. T. et al. (2011) The discovery and characterization of ML218: a novel, centrally active T-type calcium channel inhibitor with robust effects in STN neurons and in a rodent model of Parkinson's disease. ACS Chem. Neurosci. 2, 730742.
  • Xie H. Q. and Adler R. (2000) Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors. Invest. Ophthalmol. Vis. Sci. 41, 43174323.
  • Yaari Y., Hamon B. and Lux H. D. (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235, 680682.