SEARCH

SEARCH BY CITATION

References

  • Acevedo S. F., Pfankuch T., van Meer P. and Raber J. (2008) Role of histamine in short- and long-term effects of methamphetamine on the developing mouse brain. J. Neurochem. 107, 976986.
  • Ambroggi F., Turiault M., Milet A. et al. (2009) Stress and addiction: glucocorticoid receptor in dopaminoceptive neurons facilitates cocaine seeking. Nat. Neurosci. 12, 247249.
  • Angulo J. A., Ledoux M. and McEwen B. S. (1991) Genomic effects of cold and isolation stress on magnocellular vasopressin mRNA-containing cells in the hypothalamus of the rat. J. Neurochem. 56, 20332038.
  • Bhatnagar S. and Dallman M. F. (1998) Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84, 10251039.
  • Bhatnagar S., Huber R., Nowak N. and Trotter P. (2002) Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint. J. Neuroendocrinol. 14, 403410.
  • Brecht M. L., O'Brien A., von Mayrhauser C. and Anglin M. D. (2004) Methamphetamine use behaviors and gender differences. Addict. Behav. 29, 89106.
  • Busnardo C., Tavares R. F., Resstel L. B., Elias L. L. and Correa F. M. (2010) Paraventricular nucleus modulates autonomic and neuroendocrine responses to acute restraint stress in rats. Auton. Neurosci. 158, 5157.
  • Campbell T., Lin S., DeVries C. and Lambert K. (2003) Coping strategies in male and female rats exposed to multiple stressors. Physiol. Behav. 78, 495504.
  • Choi D. C., Furay A. R., Evanson N. K., Ostrander M. M., Ulrich-Lai Y. M. and Herman J. P. (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J. Neurosci. 27, 20252034.
  • Dallman M. F., Akana S. F., Jacobson L., Levin N., Cascio C. S. and Shinsako J. (1987) Characterization of corticosterone feedback regulation of ACTH secretion. Ann. N. Y. Acad. Sci. 512, 402414.
  • Diorio D., Viau V. and Meaney M. J. (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. 13, 38393847.
  • Dluzen D. E. and Liu B. (2008) Gender differences in methamphetamine use and responses: a review. Gend. Med. 5, 2435.
  • Dunn J. D. and Orr S. E. (1984) Differential plasma corticosterone responses to hippocampal stimulation. Exp. Brain Res. 54, 16.
  • Fernandes G. A., Perks P., Cox N. K., Lightman S. L., Ingram C. D. and Shanks N. (2002) Habituation and cross-sensitization of stress-induced hypothalamic-pituitary-adrenal activity: effect of lesions in the paraventricular nucleus of the thalamus or bed nuclei of the stria terminalis. J. Neuroendocrinol. 14, 593602.
  • Fernández-Guasti A., Fiedler J. L., Herrera L. and Handa R. J. (2012) Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones. Horm. Metab. Res. 44, 607618.
  • Figueiredo H. F., Dolgas C. M. and Herman J. P. (2002) Stress activation of cortex and hippocampus is modulated by sex and stage of estrus. Endocrinology 143, 25342540.
  • Franklin K. B. J. and Paxinos G. (2007) The mouse brain in stereotaxic coordinates, 3rd ed. Elsevier, Amsterdam.
  • Furay A. R., Bruestle A. E. and Herman J. P. (2008) The role of the forebrain glucocorticoid receptor in acute and chronic stress. Endocrinology 149, 54825490.
  • Giardino W. J., Pastor R., Anacker A. M., Spangler E., Cote D. M., Li J., Stenzel-Poore M. P., Phillips T. J. and Ryabinin A. E. (2011) Dissection of corticotropin-releasing factor system involvement in locomotor sensitivity to methamphetamine. Genes Brain Behav. 10, 7889.
  • Goel N., Plyler K. S., Daniels D. and Bale T. L. (2011) Androgenic influence on serotonergic activation of the HPA stress axis. Endocrinology 152, 20012010.
  • Gómez F., Lahmame A., de Kloet E. R. and Armario A. (1996) Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains: differential responses are mainly located at the adrenocortical level. Neuroendocrinology 63, 327337.
  • Handa R. J., Burgess L. H., Kerr J. E. and O'Keefe J. A. (1994a) Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm. Behav. 28, 464476.
  • Handa R. J., Nunley K. M., Lorens S. A., Louie J. P., McGivern R. F. and Bollnow M. R. (1994b) Androgen regulation of adrenocorticotropin and corticosterone secretion in the male rat following novelty and foot shock stressors. Physiol. Behav. 55, 117124.
  • Handa R. J., Weiser M. J. and Zuloaga D. G. (2009) A role for the androgen metabolite, 5alpha-androstane-3beta,17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity. J. Neuroendocrinol. 21, 351358.
  • Handelmann G. E. and Olton D. S. (1981) Spatial memory following damage to hippocampal CA3 pyramidal cells with kainic acid: impairment and recovery with preoperative training. Brain Res. 217, 4158.
  • Herman J. P., Patel P. D., Akil H. and Watson S. J. (1989) Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol. Endocrinol. 11, 18861894.
  • Herman J. P., Adams D. and Prewitt C. (1995) Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61, 180190.
  • Herman J. P., McKlveen J. M., Solomon M. B., Carvalho-Netto E. and Myers B. (2012) Neural regulation of the stress response: glucocorticoid feedback mechanisms. Braz. J. Med. Biol. Res. 45, 292298.
  • Hunsaker M. R., Tran G. T. and Kesner R. P. (2009) A behavioral analysis of the role of CA3 and CA1 subcortical efferents during classical fear conditioning. Behav. Neurosci. 123, 624630.
  • Isaacson R. L. and Lanthorn T. H. (1981) Hippocampal involvement in the pharmacologic induction of withdrawal-like behaviors. Fed Proc. 40, 15081512.
  • Jensen J. B., Jessop D. S., Harbuz M. S., Mørk A., Sánchez C. and Mikkelsen J. D. (1999) Acute and long-term treatments with the selective serotonin reuptake inhibitor citalopram modulate the HPA axis activity at different levels in male rats. J. Neuroendocrinol. 11, 465471.
  • de Kloet E. R. and Derijk R. (2004) Signaling pathways in brain involved in predisposition and pathogenesis of stress-related disease: genetic and kinetic factors affecting the MR/GR balance. Ann N Y Acad Sci. 1032, 1434.
  • de Kloet E. R., Joels M. and Holsboer F. (2005) Stress and the brain: from adaptation to disease. Neuroscience 6, 463475.
  • Kovács K. J. and Mezey E. (1987) Dexamethasone inhibits corticotropin-releasing factor gene expression in the rat paraventricular nucleus. Neuroendocrinology 46, 365368.
  • Kuo Y. M., Chen H. H., Shieh C. C., Chuang K. P., Cherng C. G. and Yu L. (2003) 4-Hydroxytamoxifen attenuates methamphetamine-induced nigrostriatal dopaminergic toxicity in intact and gonadetomized mice. J. Neurochem. 87, 14361443.
  • Leach L. S., Christensen H., Mackinnon A. J., Windsor T. D. and Butterworth P. (2008) Gender differences in depression and anxiety across the adult lifespan: the role of psychosocial mediators. Soc. Psychiatry Psychiatr. Epidemiol. 43, 983998.
  • Lowy M. T. (1990) MK-801 antagonizes methamphetamine-induced decreases in hippocampal and striatal corticosteroid receptors. Brain Res. 533, 348352.
  • McGivern R. F., Zuloaga D. G. and Handa R. J. (2009) Sex differences in stress-induced hyperthermia in rats: restraint versus confinement. Physiol. Behav. 98, 416420.
  • Nawata Y., Kitaichi K. and Yamamoto T. (2012) Increases of CRF in the amygdala are responsible for reinstatement of methamphetamine-seeking behavior induced by footshock. Pharmacol. Biochem. Behav. 101, 297302.
  • Nicosia N., Pacula R.L., Kilmer B., Lundberg R. and Chiesa J. (2009) The Economic Cost of Methamphetamine Use in the United States, MG-829-MPF/NIDA, 2009, p.169, online at:http://www.rand.org/pubs/monographs/MG829/ [accessed on 6 December 2013].
  • Palanza P. (2001) Animal models of anxiety and depression: how are females different? Neurosci. Biobehav. Rev. 25, 219233.
  • Plotsky P. M. (1987) Regulation of hypophysiotrophic factors mediating ACTH secretion. Ann. N. Y. Acad. Sci. 512, 205217.
  • Reichel C. M., Chan C. H., Ghee S. M. and See R. E. (2012) Sex differences in escalation of methamphetamine self-administration: cognitive and motivational consequences in rats. Psychopharmacology 223, 371380.
  • Reul J. M. and de Kloet E. R. (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 25052511.
  • Reul J. M. H. M., Van Den Bosch F. R. and De Kloet E. R. (1987) Differential response of type I and type II corticosteroid receptors to changes in plasma steroid level and circadian rhythmicity. Neuroendocrinology 45, 407412.
  • Robertson C. L. (1977) The regulation of vasopressin function in health and disease. Recent Prog. Horm. Res. 33, 333385.
  • Roth M. E. and Carroll M. E. (2004) Sex differences in the acquisition of IV methamphetamine self-administration and subsequent maintenance under a progressive ratio schedule in rats. Psychopharmacology 172, 443449.
  • Salomé N., Salchner P., Viltart O., Sequeira H., Wigger A., Landgraf R. and Singewald N. (2004) Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): differential Fos expression in HAB and LAB rats. Biol. Psychiatry 55, 715723.
  • Sawchenko P. E. and Swanson L. W. (1983) The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J. Comp. Neurol. 218, 121144.
  • Sawchenko P. E., Arias C. A. and Mortrud M. T. (1993) Local tetrodotoxin blocks chronic stress effects on corticotropin-releasing factor and vasopressin messenger ribonucleic acids in hypophysiotropic neurons. J. Neuroendocrinol. 5, 341348.
  • Shoener J. A., Baig R. and Page K. C. (2006) Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, 13661373.
  • Silverman A. J., Hoffman D. L. and Zimmerman E. A. (1981) The descending afferent connections of the paraventricular nucleus of the hypothalamus (PVN). Brain Res. Bull. 6, 4761.
  • Skorecki K. L., Brown D., Ercolani L. and Ausiello D. A. (1992) Molecular mechanisms of vasopressin action in the kidney, in Handbook of physiology, (Windhager E. E., ed.), pp. 11851218. Oxford UP, New York.
  • de Souza L. M. and Franci C. R. (2010) Differential immunoreactivity of glucocorticoid receptors and vasopressin in neurons of the anterior and medial parvocellular subdvisions of the hypothalamic paraventricular nucleus. Brain Res Bull. 82, 271278.
  • Substance Abuse and Mental Health Services Administration (SAMHSA) (2010) Gender differences among American Indian Treatment Admissions Aged 18 to 25. In: The TEDS Report, June 24, 2010. TEDS10-0624.
  • Substance Abuse and Mental Health Services Administration (SAMHSA). (2012) Results from the 2011 National Survey on Drug Use and Health: Summary of National Findings. In: NSDUH Series H-44, HHS Publication No. (SMA) 12-4713, Substance Abuse and Mental Health Services Administration, Rockville, MD.
  • Turner B. H. and Herkenham M. (1991) Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing. J. Comp. Neurol. 313, 295325.
  • Uht R. M., McKelvy J. F., Harrison R. W. and Bohn M. C. (1988) Demonstration of glucocorticoid receptor-like immunoreactivity in glucocorticoid-sensitive vasopressin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus. J Neurosci Res. 19, 405–411, 468469.
  • Veening J. G., Bouwknecht J. A., Joosten H. J., Dederen P. J., Zethof T. J., Groenink L., van der Gugten J. and Olivier B. (2004) Stress-induced hyperthermia in the mouse: c-fos expression, corticosterone and temperature changes. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 699707.
  • Ventura-Silva A. P., Melo A., Ferreira A. C., Carvalho M. M., Campos F. L., Sousa N. and Pêgo J. M. (2013) Excitotoxic lesions in the central nucleus of the amygdala attenuate stress-induced anxiety behavior. Front. Behav. Neurosci. 7, 32.
  • Volpi S., Rabadan-Diehl C. and Aguilera G. (2004) Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress 7, 7583.
  • Wang X. Y., Zhao M., Ghitza U. E., Li Y. Q. and Lu L. (2008) Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala. J. Neurosci. 28, 56025610.
  • Wang H. N., Peng Y., Tan Q. R. et al. (2010) Quetiapine ameliorates anxiety-like behavior and cognitive impairments in stressed rats: implications for the treatment of posttraumatic stress disorder. Physiol. Res. 59, 263271.
  • Weiser M. J. and Handa R. J. (2009) Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic-pituitary-adrenal axis via estrogen receptor alpha within the hypothalamus. Neuroscience 159, 883895.
  • Williams M. T., Inman-Wood S. L., Morford L. L., McCrea A. E., Ruttle A. M., Moran M. S., Rock S. L. and Vorhees C. V. (2000) Preweaning treatment with methamphetamine induces increases in both corticosterone and ACTH in rats. Neurotoxicol. Teratol. 22, 751759.
  • Zavala J. K., Fernandez A. A. and Gosselink K. L. (2011) Female responses to acute and repeated restraint stress differ from those in males. Physiol. Behav. 104, 215221.
  • Zhu H., Mingler M. K., McBride M. L., Murphy A. J., Valenzuela D. M., Yancopoulos G. D., Williams M. T., Vorhees C. V. and Rothenberg M. E. (2010) Abnormal response to stress and impaired NPS-induced hyperlocomotion, anxiolytic effect and corticosterone increase in mice lacking NPSR1. Psychoneuroendocrinology 35, 11191132.
  • Zuloaga D. G., Morris J. A., Jordan C. L. and Breedlove S. M. (2008) Mice with the testicular feminization mutation demonstrate a role for androgen receptors in the regulation of anxiety-related behaviors and the hypothalamic-pituitary-adrenal axis. Horm. Behav. 54, 758766.
  • Zuloaga D. G., Poort J. E., Jordan C. L. and Breedlove S. M. (2011) Male rats with the testicular feminization mutation of the androgen receptor display elevated anxiety-related behavior and corticosterone response to mild stress. Horm. Behav. 60, 380388.
  • Zuloaga D. G., Siegel J. A., Agam M. and Raber J. (2013) Developmental methamphetamine exposure results in short- and long-term alterations in HPA axis-associated proteins. Dev. Neurosci. 35, 338346.