SEARCH

SEARCH BY CITATION

References

  • Azuma M. and Shearer T. R. (2008) The role of calcium-activated protease calpain in experimental retinal pathology. Surv. Ophthalmol. 53, 150163.
  • Banik N. L., Chakrabarti A. K. and Hogan E. L. (1987) Distribution of calcium activated neutral proteinase (mM CANP) in myelin and cytosolic fractions in bovine brain white matter. Life Sci. 41, 10891095.
  • Banik N. L., Matzelle D. C., Gantt-Wilford G., Osborne A. and Hogan E. L. (1997) Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury. Brain Res. 752, 301306.
  • Berlet H. H. (1987) Calcium-dependent neutral protease activity of myelin from bovine spinal cord: evidence for soluble cleavage products of myelin proteins. Neurosci. Lett. 73, 266270.
  • Bjartmar C. and Trapp B. D. (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr. Opin. Neurol. 14, 271278.
  • Cuzzocrea S., McDonald M. C., Mazzon E. et al. (2000) Calpain inhibitor I reduces the development of acute and chronic inflammation. Am. J. Pathol. 157, 20652079.
  • Das A., Sribnick E. A., Wingrave J. M., Del Re A. M., Woodward J. J., Appel S. H., Banik N. L. and Ray S. K. (2005) Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: calpain inhibition provides functional neuroprotection. J. Neurosci. Res. 81, 551562.
  • Deshpande R. V., Goust J. M., Hogan E. L. and Banik N. L. (1995) Calpain secreted by activated human lymphoid cells degrades myelin. J. Neurosci. Res. 42, 259265.
  • Diaz-Sanchez M., Williams K., DeLuca G. C. and Esiri M. M. (2006) Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol. 111, 289299.
  • Fleming K. K., Bovaird J. A., Mosier M. C., Emerson M. R., LeVine S. M. and Marquis J. G. (2005) Statistical analysis of data from studies on experimental autoimmune encephalomyelitis. J. Neuroimmunol. 170, 7184.
  • Goebels N., Hofstetter H., Schmidt S., Brunner C., Wekerle H. and Hohlfeld R. (2000) Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence. Brain 123 Pt 3, 508518.
  • Guyton M. K., Wingrave J. M., Yallapragada A. V., Wilford G. G., Sribnick E. A., Matzelle D. D., Tyor W. R., Ray S. K. and Banik N. L. (2005) Upregulation of calpain correlates with increased neurodegeneration in acute experimental auto-immune encephalomyelitis. J. Neurosci. Res. 81, 5361.
  • Guyton M. K., Brahmachari S., Das A., Samantaray S., Inoue J., Azuma M., Ray S. K. and Banik N. L. (2009) Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells. J. Neurochem. 110, 18951907.
  • Guyton M. K., Das A., Samantaray S., Wallace G. C. 4th, Butler J. T., Ray S. K. and Banik N. L. (2010) Calpeptin attenuated inflammation, cell death, and axonal damage in animal model of multiple sclerosis. J. Neurosci. Res. 88, 23982408.
  • Harrington L. E., Hatton R. D., Mangan P. R., Turner H., Murphy T. L., Murphy K. M. and Weaver C. T. (2005) Interleukin 17-producing CD4 +  effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 11231132.
  • Hassan-Smith G. and Douglas M. R. (2011) Management and prognosis of multiple sclerosis. Br. J. Hosp. Med. (Lond) 72, M174M176.
  • Hassen G. W., Feliberti J., Kesner L., Stracher A. and Mokhtarian F. (2006) A novel calpain inhibitor for the treatment of acute experimental autoimmune encephalomyelitis. J. Neuroimmunol. 180, 135146.
  • Hassen G. W., Feliberti J., Kesner L., Stracher A. and Mokhtarian F. (2008) Prevention of axonal injury using calpain inhibitor in chronic progressive experimental autoimmune encephalomyelitis. Brain Res. 1236, 206215.
  • Hendry L. and John S. (2004) Regulation of STAT signalling by proteolytic processing. Eur. J. Biochem. 271, 46134620.
  • Imam S. Z., Guyton M. K., Haque A., Vandenbark A., Tyor W. R., Ray S. K. and Banik N. L. (2007) Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients. J. Neuroimmunol. 190, 139145.
  • Issazadeh S., Ljungdahl A., Hojeberg B., Mustafa M. and Olsson T. (1995) Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta. J. Neuroimmunol. 61, 205212.
  • Kennedy M. K., Torrance D. S., Picha K. S. and Mohler K. M. (1992) Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J. Immunol. 149, 24962505.
  • Kivisakk P., Mahad D. J., Callahan M. K. et al. (2003) Human cerebrospinal fluid central memory CD4 +  T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100, 83898394.
  • Kupina N. C., Nath R., Bernath E. E., Inoue J., Mitsuyoshi A., Yuen P. W., Wang K. K. and Hall E. D. (2001) The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J. Neurotrauma 18, 12291240.
  • Lassmann H. (2013) Multiple sclerosis: lessons from molecular neuropathology. Exp. Neurol. doi: 10.1016/j.expneurol.2013.12.003.
  • Lassmann H. and Ransohoff R. M. (2004) The CD4-Th1 model for multiple sclerosis: a critical [correction of crucial] re-appraisal. Trends Immunol. 25, 132137.
  • Medveczky P., Antal J., Patthy A., Kekesi K., Juhasz G., Szilagyi L. and Graf L. (2006) Myelin basic protein, an autoantigen in multiple sclerosis, is selectively processed by human trypsin 4. FEBS Lett. 580, 545552.
  • Murray T. J. (2005) Multiple Sclerosis: the History of a Disease. Demo, New York.
  • Nishihara M., Ogura H., Ueda N. et al. (2007) IL-6-gp130-STAT3 in T cells directs the development of IL-17 +  Th with a minimum effect on that of Treg in the steady state. Int. Immunol. 19, 695702.
  • Oka T., Walkup R. D., Tamada Y., Nakajima E., Tochigi A., Shearer T. R. and Azuma M. (2006) Amelioration of retinal degeneration and proteolysis in acute ocular hypertensive rats by calpain inhibitor ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-me thylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester. Neuroscience 141, 21392145.
  • Papenfuss T. L., Rogers C. J., Gienapp I., Yurrita M., McClain M., Damico N., Valo J., Song F. and Whitacre C. C. (2004) Sex differences in experimental autoimmune encephalomyelitis in multiple murine strains. J. Neuroimmunol. 150, 5969.
  • Park H., Li Z., Yang X. O. et al. (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 11331141.
  • Peterson J. W., Bo L., Mork S., Chang A. and Trapp B. D. (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389400.
  • Poser C. M. and Brinar V. V. (2004) The nature of multiple sclerosis. Clin. Neurol. Neurosurg. 106, 159171.
  • Ryu M., Yasuda M., Shi D. et al. (2011) Critical role of calpain in axonal damage-induced retinal ganglion cell death. J. Neurosci. Res. 90, 802815.
  • Sato S., Quarles R. H. and Brady R. O. (1982) Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain. J. Neurochem. 39, 97105.
  • Sato S., Quarles R. H., Brady R. O. and Tourtellotte W. W. (1984) Elevated neutral protease activity in myelin from brains of patients with multiple sclerosis. Ann. Neurol. 15, 264267.
  • Schaecher K. E., Shields D. C. and Banik N. L. (2001) Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem. Res. 26, 731737.
  • Schaecher K., Goust J. M. and Banik N. L. (2004) The effects of calpain inhibition on IkB alpha degradation after activation of PBMCs: identification of the calpain cleavage sites. Neurochem. Res. 29, 14431451.
  • Sharma A. K. and Rohrer B. (2007) Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr. Eye Res. 32, 259269.
  • Shields D. C. and Banik N. L. (1998a) Putative role of calpain in the pathophysiology of experimental optic neuritis. Exp. Eye Res. 67, 403410.
  • Shields D. C. and Banik N. L. (1998b) Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: a putative role for calpain in demyelination. Brain Res. 794, 6874.
  • Shields D. C. and Banik N. L. (1999) Pathophysiological role of calpain in experimental demyelination. J. Neurosci. Res. 55, 533541.
  • Shields D. C., Tyor W. R., Deibler G. E., Hogan E. L. and Banik N. L. (1998) Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc. Natl Acad. Sci. USA 95, 57685772.
  • Shields D. C., Schaecher K. E., Saido T. C. and Banik N. L. (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc. Natl Acad. Sci. USA 96, 1148611491.
  • Shirasaki Y., Yamaguchi M. and Miyashita H. (2006) Retinal penetration of calpain inhibitors in rats after oral administration. J. Ocul. Pharmacol. Ther. 22, 417424.
  • Smith A. W., Das A., Guyton M. K., Ray S. K., Rohrer B. and Banik N. L. (2011a) Calpain inhibition attenuates apoptosis of retinal ganglion cells in acute optic neuritis. Invest. Ophthalmol. Vis. Sci. 52, 49354941.
  • Smith A. W., Doonan B. P., Tyor W. R., Abou-Fayssal N., Haque A. and Banik N. L. (2011b) Regulation of Th1/Th17 cytokines and IDO gene expression by inhibition of calpain in PBMCs from MS patients. J. Neuroimmunol. 232, 179185.
  • Tekok-Kilic A., Benedict R. H. and Zivadinov R. (2006) Update on the relationships between neuropsychological dysfunction and structural MRI in multiple sclerosis. Expert Rev. Neurother. 6, 323331.
  • Toba S., Tamura Y., Kumamoto K. et al. (2013) Post-natal treatment by a blood-brain-barrier permeable calpain inhibitor, SNJ1945 rescued defective function in lissencephaly. Sci. Rep. 3, 1224.
  • Trapp B. D., Ransohoff R. and Rudick R. (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr. Opin. Neurol. 12, 295302.
  • Venken K., Hellings N., Broekmans T., Hensen K., Rummens J. L. and Stinissen P. (2008) Natural naive CD4 + CD25 + CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J. Immunol. 180, 64116420.
  • Venken K., Hellings N., Liblau R. and Stinissen P. (2010) Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol. Med. 16, 5868.
  • Wipfler P., Harrer A., Pilz G., Oppermann K., Trinka E. and Kraus J. (2011) Recent developments in approved and oral multiple sclerosis treatment and an update on future treatment options. Drug Discov. Today 16, 821.
  • Zheng J. and Bizzozero O. A. (2011) Decreased activity of the 20S proteasome in the brain white matter and gray matter of patients with multiple sclerosis. J. Neurochem. 117, 143153.