SEARCH

SEARCH BY CITATION

References

  • Adam J. F., Elleaume H., Le Duc G., Corde S., Charvet A. M., Troprès I., Le Bas J. F. and Estève F. (2003) Absolute cerebral blood volume and blood flow measurements based on synchrotron radiation quantitative computed tomography. J. Cereb. Blood Flow Metab. 23, 499512.
  • Alf M. F., Lei H., Berthet C., Hirt L., Gruetter R. and Mlynárik V. (2012) High-resolution spatial mapping of changes in the neurochemical profile after focal ischemia in mice. NMR Biomed. 25, 247254.
  • Alf M. F., Wyss M. T., Weber B., Buck A., Schibli R. and Krämer S. D. (2013a) Quantification of brain glucose metabolism by FDG PET with real-time arterial and image-derived input function in mice. J. Nucl. Med. 54, 132138.
  • Alf M. F., Duarte J. M. N., Schibli R., Gruetter R. and Krämer S. D. (2013b) Brain glucose transport and phosphorylation under acute insulin-induced hypoglycemia in mice: an FDG PET study. J. Nucl. Med. 54, 21532160.
  • Archer D. P., Elphinstone M. G. and Pappius H. M. (1990) The effect of pentobarbital and isoflurane on glucose metabolism in thermally injured rat brain. J. Cereb. Blood Flow Metab. 10, 624630.
  • Backes H., Walberer M., Endepols H., Neumaier B., Graf R., Wienhard K. and Mies G. (2011) Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using 18F-FDG PET: application to focal cerebral ischemia. J. Nucl. Med. 52, 12521260.
  • Barros L. F., Bittner C. X., Loaiza A. and Porras O. H. (2007) A quantitative overview of glucose dynamics in the gliovascular unit. Glia 55, 12221237.
  • Barter L., Dominguez C. L., Carstens E. and Antognini J. F. (2005) The effect of isoflurane and halothane on electronencephalographic activation elicited by repetitive noxious c-fiber stimulation. Neurosci. Letters 3, 242247.
  • Boretius S., Tammer R., Michaelis T., Brockmöller J. and Frahm J. (2013) Halogenated volatile anesthetics alter brain metabolism as revealed by proton magnetic resonance spectroscopy of mice in vivo. NeuroImage 69, 244255.
  • Brooks R. A. (1982) Alternative formula for glucose utilization using labeled deoxyglucose. J. Nucl. Med. 23, 538539.
  • Chugh B. P., Lerch J. P., Yu L. X., Pienkowski M., Harrison R. V., Henkelman R. M. and Sled J. G. (2009) Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography. NeuroImage 47, 13121318.
  • Crane P. D., Braun L. D., Cornford E. M., Cremer J. E., Glass J. M. and Oldendorf W. H. (1978) Dose dependent reduction of glucose utilization by pentobarbital in rat brain. Stroke 9, 1218.
  • Crane P. D., Pardridge W. M., Braun L. D. and Oldendorf W. H. (1983) Kinetics of transport and phosphorylation of 2-fluoro-2-deoxy-D-glucose in rat brain. J. Neurochem. 40, 160167.
  • Cunningham V. J. and Cremer J. E. (1981) A method for the simultaneous estimation of regional rates of glucose influx and phosphorylation in rat brain using radiolabeled 2-deoxyglucose. Brain Res. 221, 319330.
  • Du F., Zhang Y., Zhu X. H. and Chen W. (2012) Simultaneous measurement of glucose blood-brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS. J. Cereb. Blood Flow Metab. 32, 17781787.
  • Duarte J. M. N. and Gruetter R. (2012a) Characterization of cerebral glucose dynamics in vivo with a four-state conformational model of transport at the blood-brain barrier. J. Neurochem. 121, 396406.
  • Duarte J. M. N. and Gruetter R. (2012b) in neural metabolism in vivo, in Cerebral Glucose Transport and Homeostasis (Choi I.-Y. and Gruetter R., eds), pp. 655673. Springer, New York.
  • Duarte J. M. N., Carvalho R. A., Cunha R. A. and Gruetter R. (2009a) Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J. Neurochem. 111, 368379.
  • Duarte J. M. N., Morgenthaler F. D., Lei H., Poitry-Yamate C. and Gruetter R. (2009b) Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model. Front. Neuroenergetics 1, 6.
  • Duarte J. M. N., Lanz B. and Gruetter R. (2011) Compartmentalised cerebral metabolism of [1,6-13C]glucose determined by in vivo 13C NMR spectroscopy at 14.1 T. Front. Neuroenergetics 3, 3
  • Fuglsang A., Lomholt M. and Gjedde A. (1986) Blood-brain transfer of glucose and glucose analogs in newborn rats. J. Neurochem. 46, 14171428.
  • Gruetter R., Novotny E. J., Boulware S. D., Rothman D. L. and Shulman R. G. (1996) 1H NMR studies of glucose transport in the human brain. J. Cereb. Blood Flow Metab. 16, 427438.
  • Gruetter R., Ugurbil K. and Seaquist E. R. (1998) Steady-state cerebral glucose concentrations and transport in the human brain. J. Neurochem. 70, 397408.
  • Hansen T. D., Warner D. S., Todd M. M. and Vust L. J. (1989) The role of cerebral metabolism in determining the local cerebral blood flow effects of volatile anesthetics: evidence for persistent flow-metabolism coupling. J. Cereb. Blood Flow Metab. 9, 323328.
  • Hasselbalch S. G., Knudsen G. M., Holm S., Hageman L. P., Capaldo B. and Paulson O. B. (1996) Transport of D-glucose and 2-fluorodeoxyglucose across the blood-brain barrier in humans. J. Cereb. Blood Flow Metab. 16, 659666.
  • Hellwig S., Amtage F., Kreft A. et al. (2012) [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 79, 13141322.
  • Hennig J. (1988) Multiecho imaging sequences with low refocusing flip angles. J. Magn. Reson. 78, 397407.
  • Hyder F. and Rothman D. L. (2012) Quantitative fMRI and oxidative neuroenergetics. NeuroImage 62, 985994.
  • Keyes J. W., Jr (1995) SUV: standard uptake or silly useless value? J. Nucl. Med. 36, 18361839.
  • Kreissl M. C., Stout D. B., Wong K. P. et al. (2011) Influence of dietary state and insulin on myocardial, skeletal muscle and brain [18F]-fluorodeoxyglucose kinetics in mice. EJNMMI Res. 1, 8.
  • Krohn K. A., Muzi M. and Spence A. M. (2007) What is in a number? The FDG lumped constant in the rat brain. J. Nucl. Med. 48, 57.
  • Kühn B., Dreher W., Norris D. G. and Leibfritz D. (1996) Fast proton spectroscopic imaging employing k-space weighting achieved by variable repetition times. Magn. Reson. Med. 35, 457464.
  • Lei H., Duarte J. M. N., Mlynarik V., Python A. and Gruetter R. (2010) Deep thiopental anesthesia alters steady-state glucose homeostasis but not the neurochemical profile of rat cortex. J. Neurosci. Res. 88, 413419.
  • Liu Y. R., Cardamone L., Hogan R. E. et al. (2010) Progressive metabolic and structural cerebral perturbations after traumatic brain injury: An in vivo imaging study in the rat. J. Nucl. Med. 51, 17881795.
  • Lund-Andersen H. (1979) Transport of glucose from blood to brain. Physiol. Rev. 59, 305352.
  • Mizuma H., Shukuri M., Hayashi T., Watanabe Y. and Onoe H. (2010) Establishment of in vivo brain imaging method in conscious mice. J. Nucl. Med. 51, 10681075.
  • Mlynárik V., Kohler I., Gambarota G., Vaslin A., Clarke P. G. and Gruetter R. (2008) Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultra-short echo times. Magn. Reson. Med. 59, 5258.
  • Moore A. H., Osteen C. L., Chatziioannou A. F., Hovda D. A. and Cherry S. R. (2000) Quantitative assessment of longitudinal metabolic changes in vivo after traumatic brain injury in the adult rat. J. Cereb. Blood Flow Metab. 20, 14921501.
  • Saha J. K., Xia J., Grondin J. M., Engle S. K. and Jakubowski J. A. (2005) Acute hyperglycemia induced by ketamine/xylazine anaesthesia in rats: mechanisms and implications for preclinical models. Exp. Biol. Med. (Maywood) 230, 777784.
  • Sakabe T., Tsutsui T., Maekawa T., Ishikawa T. and Takeshita H. (1985) Local cerebral glucose utilization during nitrous oxide and pentobarbital anaesthesia in rats. Anesthesiology 63, 262266.
  • Scheef L., Spottke A., Daerr M. et al. (2012) Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology 79, 13321339.
  • Schmidt K. C., Mies G., Dienel G. A., Cruz N. F., Crane A. M. and Sokoloff L. (1995) Analysis of time courses of metabolic precursors and products in heterogeneous rat brain tissue: limitations of kinetic modeling for predictions of intracompartmental concentrations from total tissue activity. J. Cereb. Blood Flow Metab. 15, 474484.
  • Shestov A. A., Emir U. E., Kumar A., Henry P. G., Seaquist E. R. and Oz G. (2011) Simultaneous measurement of glucose transport and utilization in the human brain. Am. J. Physiol. Endocrinol. Metab. 301, E1040E1049.
  • Shimoji K., Ravasi L., Schmidt K., Soto-Montenegro M. L., Esaki T., Seidel J., Jagoda E., Sokoloff L., Green M. V. and Eckelman W. C. (2004) Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling. J. Nucl. Med. 45, 665672.
  • Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L. and Shulman R. G. (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl Acad. Sci. USA 95, 316321.
  • Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O. and Shinohara M. (1977) The [14C]Deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897916.
  • Takuwa H., Matsuura T., Obata T., Kawaguchi H., Kanno I. and Ito H. (2012) Hemodynamic changes during somatosensory stimulation in awake and isoflurane-anesthetized mice measured by laser-Doppler flowmetry. Brain Res. 1472, 107112.
  • Tokugawa J., Ravasi L., Nakayama T., Schmidt K. C. and Sokoloff L. (2007) Operational lumped constant for FDG in normal adult male rats. J. Nucl. Med. 48, 9499.
  • Torigian D. A., Zaidi H., Kwee T. C., Saboury B., Udupa J. K., Cho Z. H. and Alavi A. (2013) PET/MR imaging: technical aspects and potential clinical applications. Radiology 267, 2644.
  • Toyama H., Ichise M., Liow J. S. et al. (2004) Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography. J. Nucl. Med. 45, 13981405.
  • Weber B., Burger C., Biro P. and Buck A. (2002) A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals. Eur. J. Nucl. Med. Mol. Imaging. 29, 319323.
  • Yu A. S., Lin H. D., Huang S. C., Phelps M. E. and Wu H. M. (2009) Quantification of cerebral glucose metabolic rate in mice using 18F-FDG and small-animal PET. J. Nucl. Med. 50, 966973.