SEARCH

SEARCH BY CITATION

References

  • Aberg M. A. I., Aberg N. D., Palmer T. D. et al. (2003) IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol. Cell. Neurosci. 24, 2340.
  • Ajo R., Cacicedo L., Navarro C. and Sánchez-Franco F. (2003) Growth hormone action on proliferation and differentiation of cerebral cortical cells from fetal rat. Endocrinology 144, 10861097.
  • Al-Qassab H., Smith M. A., Irvine E. E. et al. (2009) Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab. 10, 343354.
  • Arsenijevic Y. and Weiss S. (1998) Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor. J. Neurosci. 18, 21182128.
  • Bakin A. V., Tomlinson A. K., Bhowmick N. A., Moses H. L. and Arteaga C. L. (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 3680336810.
  • Bi L., Okabe I., Bernard D. J., Wynshaw-Boris A. and Nussbaum R. L. (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 1096310968.
  • Chen C. H., Shaikenov T., Peterson T. R., Aimbetov R., Bissenbaev A. K., Lee S. W., Wu J., Lin H. K. and Sarbassov dos D. (2011) ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci. Signal., 4, ra10.
  • Conery A. R., Cao Y., Thompson E. A., Townsend C. M., Jr, Ko T. C. and Luo K. (2004) Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat. Cell Biol. 6, 366372.
  • Dalle Pezze P., Sonntag A. G., Thien A. et al. (2012) Dynamic Network A Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation. Sci. Signal., 5, ra25.
  • Danielpour D. and Song K. (2006) Cross-talk between IGF-I and TGF-β signaling pathways. Cytokine Growth Factor Rev. 17, 5974.
  • Frias M. A., Thoreen C. C., Jaffe J. D., Schroder W., Sculley T., Carr S. A. and Sabatini D. M. (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16, 18651870.
  • Glidden E. J., Gray L. G., Vemuru S., Li D., Harris T. E. and Mayo M. W. (2012) Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J. Biol. Chem. 287, 581588.
  • Han B. H., Zhou M. l., Abousaleh F. et al. (2008a) Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid- peptide, partial restoration via -secretase inhibition. J. Neurosci. 28, 1354213550.
  • Han J., Wang B., Xiao Z., Gao Y., Zhao Y., Zhang J., Chen B., Wang X. and Dai J. (2008b) Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol. Cell. Neurosci. 39, 118124.
  • Ishizuka Y., Kakiya N., Witters L. A., Oshiro N., Shirao T., Nawa H. and Takei N. (2013) AMP-activated protein kinase counteracts brain-derived neurotrophic factor-induced mammalian target of rapamycin complex 1 signaling in neurons. J. Neurochem. 127, 6677.
  • Jossin Y. and Goffinet A. M. (2007) Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol. Cell. Biol. 27, 71137124.
  • Julien L. A., Carriere A., Moreau J. and Roux P. P. (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol. Cell. Biol. 30, 908921.
  • Kang S. A., Pacold M. E., Cervantes C. L. et al. (2013) mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566.
  • Kim B. W., Choi M., Kim Y. S. et al. (2008) Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin. Cell. Signal. 20, 714725.
  • Lamming D. W., Ye L., Katajisto P. et al. (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 16381643.
  • Lamouille S., Connolly E., Smyth J. W., Akhurst R. J. and Derynck R. (2012) TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J. Cell Sci. 125, 12591273.
  • Laplante M. and Sabatini D. M. (2012) mTOR Signaling in Growth Control and Disease. Cell 149, 274293.
  • Liu P., Gan W., Inuzuka H. et al. (2013) Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat. Cell Biol. 15, 13401350.
  • Ma T., Tzavaras N., Tsokas P., Landau E. M. and Blitzer R. D. (2011) Synaptic stimulation of mTOR is mediated by Wnt signaling and regulation of glycogen synthetase kinase-3. J. Neurosci. 31, 1753717546.
  • Mairet-Coello G., Tury A. and DiCicco-Bloom E. (2009) Insulin-like growth factor-1 promotes G(1)/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. J. Neurosci. 29, 775788.
  • Matheny R. W., Jr and Adamo M. L. (2010) PI3K p110 alpha and p110 beta have differential effects on Akt activation and protection against oxidative stress-induced apoptosis in myoblasts. Cell Death Differ. 17, 677688.
  • Matheny R. W., Lynch C. M. and Leandry L. A. (2012) Enhanced Akt phosphorylation and myogenic differentiation in PI3K p110 beta-deficient myoblasts is mediated by PI3K p110 alpha and mTORC2. Growth Factors 30, 367384.
  • Palazuelos J., Ortega Z., Diaz-Alonso J., Guzman M. and Galve-Roperh I. (2012) CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J. Biol. Chem. 287, 11981209.
  • Peltier J., O'Neill A. and Schaffer D. V. (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev. Neurobiol., 67, 13481361.
  • Remy I., Montmarquette A. and Michnick S. W. (2004) PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat. Cell Biol. 6, 358365.
  • Sarbassov D. D., Ali S. M., Sengupta S., Sheen J. H., Hsu P. P., Bagley A. F., Markhard A. L. and Sabatini D. M. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159168.
  • Sato A., Sunayama J., Matsuda K.-I., Tachibana K., Sakurada K., Tomiyama A., Kayama T. and Kitanaka C. (2010) Regulation of neural stem/progenitor cell maintenance by PI3K and mTOR. Neurosci. Lett. 470, 115120.
  • Siegenthaler J. A. and Miller M. W. (2008) Generation of Cajal-Retzius neurons in mouse forebrain is regulated by transforming growth factor β-Fox signaling pathways. Dev. Biol. 313, 3546.
  • Sinor A. D. and Lillien L. (2004) Akt-1 expression level regulates CNS precursors. J. Neurosci. 24, 85318541.
  • Song K., Wang H., Krebs T. L. and Danielpour D. (2006) Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J. 25, 5869.
  • Sonntag A. G., Dalle Pezze P., Shanley D. P. and Thedieck K. (2012) A modelling-experimental approach reveals IRS dependent regulation of AMPK by Insulin. FEBS J. 279, 33143328.
  • Takahashi T., Nowakowski R. S. and Caviness V. S. (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci. 16, 61836196.
  • Thoreen C. C. and Sabatini D. M. (2009) Rapamycin inhibits mTORC1, but not completely. Autophagy 5, 725726.
  • Thoreen C. C., Kang S. A., Chang J. W. et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 80238032.
  • Urbanska M., Gozdz A., Swiech L. J. and Jaworski J. (2012) Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons. J. Biol. Chem. 287, 3024030256.
  • Vogel T. (2013) Insulin/IGF-signalling in embryonic and adult neural proliferation and differentiation in the mammalian central nervous system, in Trends in Cell Signaling Pathways in Neuronal Fate Decision (Wislet-Gendebien S., ed.), pp. 3773. InTech Open Access System, Rijeka, Croatia.
  • Vogel T., Ahrens S., Buttner N. and Krieglstein K. (2010) Factor transforming growth cell promotes neuronal fate of cortical mouse and in hippocampal progenitors vitro and vivo in: identification of Nedd9 as an component essential signaling. Cereb. Cortex (New York N.Y.: 1991), 20, 661671.
  • Xue G., Restuccia D. F., Lan Q., Hynx D., Dirnhofer S., Hess D., Ruegg C. and Hemmings B. A. (2012) Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-beta signaling axes. Cancer Discov. 2, 248259.
  • Ye P. and D'Ercole A. J. (2006) Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system. J. Neurosci. Res. 83, 16.
  • Zhang L., Zhou F., Drabsch Y. et al. (2012) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nat. Cell Biol. 14, 717726.
  • Zheng W.-H., Kar S. and Quirion R. (2002) Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol. Pharmacol. 62, 225233.