SEARCH

SEARCH BY CITATION

References

  • Ascherio A. and Munger K. L. (2007) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288299.
  • Barros-Minones L., Martin-de-Saavedra D., Perez-Alvarez S. et al. (2013) Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate. Biochim. Biophys. Acta 1832, 705717.
  • Compston A. and Coles A. (2002) Multiple sclerosis. Lancet 359, 12211231.
  • Crawford C., Mason R. W., Wikstrom P. and Shaw E. (1988) The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B. Biochem. J. 253, 751758.
  • Cuerrier D., Moldoveanu T. and Davies P. L. (2005) Determination of peptide substrate specificity for mu-calpain by a peptide library-based approach: the importance of primed side interactions. J. Biol. Chem. 280, 4063240641.
  • Cuerrier D., Moldoveanu T., Inoue J., Davies P. L. and Campbell R. L. (2006) Calpain inhibition by alpha-ketoamide and cyclic hemiacetal inhibitors revealed by X-ray crystallography. Biochemistry 45, 74467452.
  • Czapski G. A., Gassowska M., Wilkaniec A., Cieslik M. and Adamczyk A. (2013) Extracellular alpha-synuclein induces calpain-dependent overactivation of cyclin-dependent kinase 5 in vitro. FEBS Lett. 587, 31353141.
  • Feng Y., Xia Y., Yu G., Shu X., Ge H., Zeng K., Wang J. and Wang X. (2013) Cleavage of GSK-3beta by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3beta activity induced by H(2)O(2). J. Neurochem. 126, 234242.
  • Ferreira S. M., Lerner S. F., Brunzini R., Reides C. G., Evelson P. A. and Llesuy S. F. (2010) Time course changes of oxidative stress markers in a rat experimental glaucoma model. Invest. Ophthalmol. Vis. Sci. 51, 46354640.
  • Harbeson S. L., Abelleira S. M., Akiyama A., Barrett R., 3rd, Carroll R. M., Straub J. A., Tkacz J. N., Wu C. and Musso G. F. (1994) Stereospecific synthesis of peptidyl alpha-keto amides as inhibitors of calpain. J. Med. Chem. 37, 29182929.
  • Hossain M. I., Roulston C. L., Kamaruddin M. A. et al. (2013) A truncated fragment of Src protein kinase generated by calpain-mediated cleavage is a mediator of neuronal death in excitotoxicity. J. Biol. Chem. 288, 96969709.
  • Huang Y. and Wang K. K. (2001) The calpain family and human disease. Trends Mol. Med. 7, 355362.
  • Kornek B. and Lassmann H. (2003) Neuropathology of multiple sclerosis-new concepts. Brain Res. Bull. 61, 321326.
  • Koumura A., Nonaka Y., Hyakkoku K., Oka T., Shimazawa M., Hozumi I., Inuzuka T. and Hara H. (2008) A novel calpain inhibitor, ((1S)-1((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-met hylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience 157, 309318.
  • Li Z., Patil G. S., Golubski Z. E., Hori H., Tehrani K., Foreman J. E., Eveleth D. D., Bartus R. T. and Powers J. C. (1993) Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J. Med. Chem. 36, 34723480.
  • Liu J., Liu M. C. and Wang K. K. (2008) Calpain in the CNS: from synaptic function to neurotoxicity. Sci. Signal. 1, re1.
  • Lubisch W., Beckenbach E., Bopp S. et al. (2003) Benzoylalanine-derived ketoamides carrying vinylbenzyl amino residues: discovery of potent water-soluble calpain inhibitors with oral bioavailability. J. Med. Chem. 46, 24042412.
  • Lucchinetti C. F., Bruck W., Rodriguez M. and Lassmann H. (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 6, 259274.
  • Medveczky P., Antal J., Patthy A., Kekesi K., Juhasz G., Szilagyi L. and Graf L. (2006) Myelin basic protein, an autoantigen in multiple sclerosis, is selectively processed by human trypsin 4. FEBS Lett. 580, 545552.
  • Menge T., Weber M. S., Hemmer B. et al. (2008) Disease-modifying agents for multiple sclerosis: recent advances and future prospects. Drugs 68, 24452468.
  • Milo R. and Kahana E. (2010) Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun. Rev. 9, A387A394.
  • Mo M., Hoang H. T., Schmidt S., Clark R. B. and Ehrlich B. E. (2013) The role of chromogranin B in an animal model of multiple sclerosis. Mol. Cell. Neurosci. 56, 102114.
  • Moldoveanu T., Jia Z. and Davies P. L. (2004) Calpain activation by cooperative Ca2+  binding at two non-EF-hand sites. J. Biol. Chem. 279, 61066114.
  • Noseworthy J. H., Lucchinetti C., Rodriguez M. and Weinshenker B. G. (2000) Multiple sclerosis. N. Engl. J. Med. 343, 938952.
  • Oka T., Walkup R. D., Tamada Y., Nakajima E., Tochigi A., Shearer T. R. and Azuma M. (2006) Amelioration of retinal degeneration and proteolysis in acute ocular hypertensive rats by calpain inhibitor ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-me thylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester. Neuroscience 141, 21392145.
  • Palumbo S. and Bosetti F. (2013) Alterations of brain eicosanoid synthetic pathway in multiple sclerosis and in animal models of demyelination: role of cyclooxygenase-2. Prostaglandins Leukot. Essent. Fatty Acids 89, 273278.
  • Rice G. P. (1999) Treatment of secondary progressive multiple sclerosis: current recommendations and future prospects. BioDrugs 12, 267277.
  • Sasaki T., Kishi M., Saito M., Tanaka T., Higuchi N., Kominami E., Katunuma N. and Murachi T. (1990) Inhibitory effect of di- and tripeptidyl aldehydes on calpains and cathepsins. J. Enzym. Inhib. 3, 195201.
  • Schaecher K. E., Shields D. C. and Banik N. L. (2001) Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem. Res. 26, 731737.
  • Shields D. C. and Banik N. L. (1999) Pathophysiological role of calpain in experimental demyelination. J. Neurosci. Res. 55, 533541.
  • Shields D. C., Schaecher K. E., Saido T. C. and Banik N. L. (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc. Natl Acad. Sci. USA 96, 1148611491.
  • Shirasaki Y., Yamaguchi M. and Miyashita H. (2006) Retinal penetration of calpain inhibitors in rats after oral administration. J. Ocul. Pharmacol. Ther. 22, 417424.
  • Stadelmann C., Wegner C. and Bruck W. (2011) Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim. Biophys. Acta 1812, 275282.
  • Suzuki R., Oka T., Tamada Y., Shearer T. R. and Azuma M. (2014) Degeneration and dysfunction of retinal neurons in acute ocular hypertensive rats: involvement of calpains. J. Ocul. Pharmacol. Ther. 30, 419428.
  • Trager N., Smith A., Wallace Iv G., Azuma M., Inoue J., Beeson C., Haque A. and Banik N. L. (2014) Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J. Neurochem. 130, 268279.
  • Wang K. K., Nath R., Posner A. et al. (1996) An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc. Natl Acad. Sci. USA 93, 66876692.
  • Zheng J. and Bizzozero O. A. (2011) Decreased activity of the 20S proteasome in the brain white matter and gray matter of patients with multiple sclerosis. J. Neurochem. 117, 143153.