SEARCH

SEARCH BY CITATION

References

  • Aggarwal S. and Cudkowicz M. (2008) ALS drug development: reflections from the past and a way forward. Neurotherapeutics 5, 516527.
  • Akaike N., Ishibashi H., Hara H., Oyama Y. and Ueha T. (1993) Effect of KB-2796, a new diphenylpiperazine Ca2+ antagonist, on voltage-dependent Ca2+ currents and oxidative metabolism in dissociated mammalian CNS neurons. Brain Res. 619, 263270.
  • Alexianu M. E., Ho B.-K., Mohamed A. H., La Bella V., Smith R. G. and Appel S. H. (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 36, 846858.
  • Allen M. J., Lacroix J. J., Ramachandran S., Capone R., Whitlock J. L., Ghadge G. D., Arnsdorf M. F., Roos R. P. and Lal R. (2012) Mutant SOD1 forms ion channel: implications for ALS pathophysiology. Neurobiol. Dis. 45, 831838.
  • Arai T., Hasegawa M., Akiyama H. et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602611.
  • Armstrong G. A. and Drapeau P. (2013) Calcium channel agonists protect against neuromuscular dysfunction in a genetic model of TDP-43 mutation in ALS. J. Neurosci. 33, 17411752.
  • Awata N., Sakai T., Satomi O. and Kawashima T. (1995) Metabolism of lomerizine hydrochloride in rats. Yakugaku Zasshi 115, 120129.
  • Batulan Z., Taylor D. M., Aarons R. J., Minotti S., Doroudchi M. M., Nalbantoglu J. and Durham H. D. (2006) Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol. Dis. 24, 213225.
  • Beers D. R., Ho B. K., Siklos L. et al. (2001) Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. J. Neurochem. 79, 499509.
  • Bensimon G., Lacomblez L. and Meininger V. and ALS-Riluzole Study Group (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med. 330, 585591.
  • Carriedo S. G., Yin H. Z., Sensi S. L. and Weiss J. H. (1998) Rapid Ca2+ entry through Ca2+ -permeable AMPA/kainate channesl triggers marked intracellular Ca2+ rises and consequent oxygen radical production. J. Neurosci. 18, 77227738.
  • Cheung E. C., McBride H. M. and Slack R. S. (2007) Mitochondrial dynamics in the regulation of neuronal cell death. Apoptosis 12, 979992.
  • Corona J. C. and Tapia R. (2007) Ca2+ -permeable AMPA receptors and intracellular Ca2+ determine motoneuron vulnerability in rat spinal cord in vivo. Neuropharmacology 52, 12191228.
  • De Vos K. J., Chapman A. L., Tennant M. E. et al. (2007) Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum. Mol. Genet. 16, 27202728.
  • Droppelmann C. A., Wang J., Campos-Melo D., Keller B., Volkening K., Hegele R. A. and Strong M. J. (2013) Detection of a novel frameshift mutation and regions with homozygosis within ARHGEF28 gene in familial amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler. Frontotemporal. Degener. 15, 444451.
  • Durham H. D., Roy J., Dong L. and Figlewicz D. A. (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56, 523530.
  • Elliott J. L. and Snider W. D. (1995) Parvalbumin is a marker of ALS-resistant motor neurons. NeuroReport 6, 449452.
  • Ghadge G. D., Slusher B. S., Bodner A. et al. (2003) Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models. Proc. Natl Acad. Sci. USA 100, 95549559.
  • Guzman J. N., Sanchez-Padilla J., Wokosin D., Kondapalli J., Ilijic E., Schumacker P. T. and Surmeier D. J. (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696700.
  • Ilijic E., Guzman J. N. and Surmeier D. J. (2011) The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson's disease. Neurobiol. Dis. 43, 364371.
  • Imai N., Konishi T., Serizawa M. and Okabe T. (2007) Do the effects of long-term lomerizine administration differ with age? Intern. Med. 46, 683684.
  • Ince P., Stout N., Shaw P., Slade J., Hunziker W., Heizmann C. W. and Baimbridge K. G. (1993) Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol. 19, 291299.
  • Ishii M., Iizuka R., Kiuchi Y., Mori Y. and Shimizu S. (2011) Neuroprotection by lomerizine, a prophylactic drug for migraine, against hydrogen peroxide-induced hippocampal neurotoxicity. Mol. Cell. Biochem. 358, 111.
  • Israelson A., Arbel N., Da C. S., Ilieva H., Yamanaka K., Shoshan-Barmatz V. and Cleveland D. W. (2010) Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS. Neuron 67, 575587.
  • Jaiswal M. K., Zech W. D., Goos M., Leutbecher C., Ferri A., Zippelius A., Carri M. T., Nau R. and Keller B. U. (2009) Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease. BMC Neurosci. 10, 64.
  • Junttila T., Koistinaho J., Reichardt L., Hidaka H., Okazaki K. and Pelto-Huikko M. (1995) Localization of neurocalcin-like immunoreactivity in rat cranial motoneurons and spinal cord interneurons. Neurosci. Lett. 183, 100103.
  • Kabashi E., Lin L., Tradewell M. L. et al. (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum. Mol. Genet. 19, 671683.
  • Kawahara Y., Kwak S., Sun H., Ito K., Hashida H., Aizawa H., Jeong S. Y. and Kanazawa I. (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J. Neurochem. 85, 680689.
  • Kriz J., Gowing G. and Julien J. P. (2003) Efficient three-drug cocktail for disease induced by mutant superoxide dismutase. Ann. Neurol. 53, 429436.
  • Kruman I. I., Pedersen W. A., Springer J. E. and Mattson M. P. (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol. 160, 2839.
  • Kuo J. J., Schonewille M., Siddique T., Schults A. N., Fu R., Bar P. R., Anelli R., Heckman C. J. and Kroese A. B. (2003) Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. J. Neurophysiol. 91, 571575.
  • Kuo J. J., Siddique T., Fu R. and Heckman C. J. (2005) Increased persistent Na+ current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J. Physiol. 563, 843854.
  • Kwiatkowski T. J., Jr, Bosco D. A., Leclerc A. L. et al. (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 12051208.
  • Lips M. B. and Keller B. U. (1998) Endogenous calcium buffering in motoneurones of the nucleus hypoglossus from mouse. J. Physiol. 511(Pt 1), 105117.
  • Liu X. and Hajnoczky G. (2009) Ca2 + -dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int. J. Biochem. Cell Biol. 41, 19721976.
  • Magrane J., Hervias I., Henning M. S., Damiano M., Kawamata H. and Manfredi G. (2009) Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum. Mol. Genet. 18, 45524564.
  • Magrane J., Sahawneh M. A., Przedborski S., Estevez A. G. and Manfredi G. (2012) Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons. J. Neurosci. 32, 229242.
  • Miller R. G., Shepherd R., Dao H., Khramstov A., Mendoza M., Graves J. and Smith S. (1996a) Controlled trial of nimodipine in amyotrophic lateral sclerosis. Neuromusc. Disord. 6, 101104.
  • Miller R. G., Smith S. A., Murphy J. R., Brinkmann J. R., Graves J., Mendoza M., Sands M. L. and Ringel S. P. (1996b) A clinical trial of verapamil in amyotrophic lateral sclerosis. Muscle Nerve 19, 511515.
  • Neumann M., Sampathu D. M., Kwong L. K. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130133.
  • Pieri M., Gaetti C., Spalloni A., Cavalcanti S., Mercuri N., Bernardi G., Longone P. and Zona C. (2003) alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptors in spinal cord motor neurons are altered in transgenic mice overexpressing human Cu, Zn superoxide dismutase (Gly(93)–>Ala) mutation. Neuroscience 122, 4758.
  • Reiner A., Medina L., Figueredo-Cardenas G. and Anfinson S. (1995) Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS. Exp. Neurol. 131, 239250.
  • Rosen D. R., Siddique T., Patterson D. et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 5962.
  • Rothstein J. D., Van Kammen M., Levey A. I., Martin L. J. and Kuncl R. W. (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 7384.
  • Roy J., Minotti S., Dong L., Figlewicz D. A. and Durham H. D. (1998) Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. J. Neurosci. 18, 96739684.
  • Shimozono S., Fukano T., Nagai T., Kirino Y., Mizuno H. and Miyawaki A. (2002) Confocal imaging of subcellular Ca2+ concentrations using a dual-excitation ratiometric indicator based on green fluorescent protein. Sci. STKE 2002, P14.
  • Siklos L., Engelhardt J., Harati Y., Smith R. G., Joo F. and Appel S. H. (1996) Ultrastructural evidence for altered calcium in motor nerve terminals in amyotropic lateral sclerosis. Ann. Neurol. 39, 203216.
  • Siklós L., Engelhardt J. I., Alexianu M. E., Gurney M. E., Siddique T. and Appel S. H. (1998) Intracellular calcium parallels motoneuron degeneration in SOD-1 mutant mice. J. Neuropathol. Exp. Neurol. 57, 571587.
  • Simuni T., Borushko E., Avram M. J., Miskevics S., Martel A., Zadikoff C., Videnovic A., Weaver F. M., Williams K. and Surmeier D. J. (2010) Tolerability of isradipine in early Parkinson's disease: a pilot dose escalation study. Mov. Disord. 25, 28632866.
  • Song W., Song Y., Kincaid B., Bossy B. and Bossy-Wetzel E. (2012) Mutant SOD1(G93A) triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1alpha. Neurobiol. Dis. 51, 7281.
  • Takuma H., Kwak S., Yoshizawa T. and Kanazawa I. (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann. Neurol. 46, 806815.
  • Tateno M., Sadakata H., Tanaka M. et al. (2004) Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum. Mol. Genet. 13, 21832196.
  • Tortarolo M., Grignaschi G., Calvaresi N. et al. (2006) Glutamate AMPA receptors change in motor neurons of SOD1G93A transgenic mice and their inhibition by a noncompetitive antagonist ameliorates the progression of amytrophic lateral sclerosis-like disease. J. Neurosci. Res. 83, 134146.
  • Tradewell M. L. and Durham H. D. (2010) Calpastatin reduces toxicity of SOD1G93A in a culture model of amyotrophic lateral sclerosis. NeuroReport 21, 976979.
  • Tradewell M. L., Cooper L., Minotti S. and Durham H. D. (2011) Calcium dysregulation, mitochondrial pathology and protein aggregation in a culture model of amyotrophic lateral sclerosis: mechanistic relationship and differential sensitivity to intervention. Neurobiol. Dis. 42, 265275.
  • Tradewell M. L., Yu Z., Tibshirani M., Boulanger M.-C., Durham H. D. and Richard S. (2012) Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum. Mol. Genet. 21, 136149.
  • Traynor B. J., Bruijn L., Conwit R., Beal F., O'Neill G., Fagan S. C. and Cudkowicz M. E. (2006) Neuroprotective agents for clinical trials in ALS: a systematic assessment. Neurology 67, 2027.
  • Van Damme P., Leyssen M., Callewaert G., Robberecht W. and Van Den B. L. (2003) The AMPA receptor antagonist NBQX prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci. Lett. 343, 8184.
  • Van Damme P., Braeken D., Callewaert G., Robberecht W. and Van Den B. L. (2005) GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 64, 605612.
  • Vance C., Rogelj B., Hortobagyi T. et al. (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 12081211.
  • Vande Velde C., Miller T. M., Cashman N. R. and Cleveland D. W. (2008) Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc. Natl. Acad. Sci. USA 105, 40224027.
  • Vande Velde C., McDonald K. K., Boukhedimi Y., McAlonis-Downes M., Lobsiger C. S., Bel H. S., Zandona A., Julien J. P., Shah S. B. and Cleveland D. W. (2011) Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS ONE 6, e22031.
  • Vandenberghe W., Robberecht W. and Brorson J. R. (2000) AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. J. Neurosci. 20, 123132.
  • Williams T. L., Day N. C., Ince P. G., Kamboj R. K. and Shaw P. J. (1997) Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 42, 200207.
  • Zinman L. and Cudkowicz M. (2011) Emerging targets and treatments in amyotrophic lateral sclerosis. Lancet Neurol. 10, 481490.