SEARCH

SEARCH BY CITATION

References

  • The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971983.
  • Aarts M. M. and Tymianski M. (2003) Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors. Biochem. Pharmacol. 66, 877886.
  • Aisen P., Enns C. and Wessling-Resnick M. (2001) Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 33, 940959.
  • Albin R. L. and Tagle D. A. (1995) Genetics and molecular biology of Huntington's disease. Trends Neurosci. 18, 1114.
  • Albin R. L., Young A. B., Penney J. B., Handelin B., Balfour R., Anderson K. D., Markel D. S., Tourtellotte W. W. and Reiner A. (1990) Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington's disease. N. Engl. J. Med. 322, 12931298.
  • Armitage A. E., Eddowes L. A., Gileadi U., Cole S., Spottiswoode N., Selvakumar T. A., Ho L.-P., Townsend A. R. M. and Drakesmith H. (2011) Hepcidin regulation by innate immune and infectious stimuli. Blood 118, 41294139.
  • Arosio P., Ingrassia R. and Cavadini P. (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta 1790, 589599.
  • Arrasate M. and Finkbeiner S. (2012) Protein aggregates in Huntington's disease. Exp. Neurol. 238, 111.
  • Atwal R. S., Xia J., Pinchev D., Taylor J., Epand R. M. and Truant R. (2007) Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 16, 26002615.
  • Auerbach W., Hurlbert M. S., Hilditch-Maguire P., Wadghiri Y. Z., Wheeler V. C., Cohen S. I., Joyner A. L., MacDonald M. E. and Turnbull D. H. (2001) The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin. Hum. Mol. Genet. 10, 25152523.
  • Aziz N. A., van Belzen M. J. and Roos R. A. (2008) Intergenerational CAG repeat instability is highly heritable in Huntington's disease. J. Med. Genet. 45, 766.
  • Baiamonte B. A., Lee F. A., Brewer S. T., Spano D. and LaHoste G. J. (2013) Attenuation of Rhes activity significantly delays the appearance of behavioral symptoms in a mouse model of Huntington's disease. PLoS ONE 8, e53606.
  • Bakshi R., Shaikh Z. A. and Janardhan V. (2000) MRI T2 shortening (‘black T2’) in multiple sclerosis: frequency, location, and clinical correlation. NeuroReport 11, 1521.
  • Bakshi R., Dmochowski J., Shaikh Z. A. and Jacobs L. (2001) Gray matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J. Neurol. Sci. 185, 1926.
  • Bartzokis G. and Tishler T. A. (2000) MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer's and Huntingon's disease. Cell. Mol. Biol. (Noisy-le-grand) 46, 821833.
  • Bartzokis G., Aravagiri M., Oldendorf W. H., Mintz J. and Marder S. R. (1993) Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magn. Reson. Med. 29, 459464.
  • Bartzokis G., Cummings J., Perlman S., Hance D. B. and Mintz J. (1999) Increased basal ganglia iron levels in Huntington disease. Arch. Neurol. 56, 569574.
  • Bartzokis G., Tishler T. A., Shin I.-S., Lu P. H. and Cummings J. L. (2004) Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann. N. Y. Acad. Sci. 1012, 224236.
  • Bartzokis G., Lu P. H., Tishler T. A., Fong S. M., Oluwadara B., Finn J. P., Huang D., Bordelon Y., Mintz J. and Perlman S. (2007) Myelin breakdown and iron changes in Huntington's disease: pathogenesis and treatment implications. Neurochem. Res. 32, 16551664.
  • Beal M. F., Ferrante R. J., Swartz K. J. and Kowall N. W. (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J. Neurosci. 11, 16491659.
  • Benchoua A., Trioulier Y., Zala D. et al. (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol. Biol. Cell 17, 16521663.
  • Bennett E. J., Shaler T. A., Woodman B., Ryu K. Y., Zaitseva T. S., Becker C. H., Bates G. P., Schulman H. and Kopito R. R. (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448, 704708.
  • Bermel R. A., Puli S. R., Rudick R. A., Weinstock-Guttman B., Fisher E., Munschauer F. E., 3rd and Bakshi R. (2005) Prediction of longitudinal brain atrophy in multiple sclerosis by gray matter magnetic resonance imaging T2 hypointensity. Arch. Neurol. 62, 13711376.
  • Bezprozvanny I. (2009) Calcium signaling and neurodegenerative diseases. Trends Mol. Med. 15, 89100.
  • Björkqvist M., Wild E. J., Thiele J. et al. (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J. Exp. Med. 205, 18691877.
  • van den Bogaard S. J. A., Dumas E. M. and Roos R. A. C. (2013) The role of iron imaging in Huntington's disease. Int. Rev. Neurobiol. 110, 241250.
  • Boll M. C., Alcaraz-Zubeldia M., Montes S. and Rios C. (2008) Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochem. Res. 33, 17171723.
  • Bonilla E., Estévez J., Suárez H., Morales L. M., Chacin de Bonilla L., Villalobos R. and Dávila J. O. (1991) Serum ferritin deficiency in Huntington's disease patients. Neurosci. Lett. 129, 2224.
  • Bossy-Wetzel E., Schwarzenbacher R. and Lipton S. A. (2004) Molecular pathways to neurodegeneration. Nat. Med. 10(Suppl), S2S9.
  • Bowling A. C. and Beal M. F. (1995) Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci. 56, 11511171.
  • Brenman J. E. and Bredt D. S. (1996) Nitric oxide signaling in the nervous system. Methods Enzymol. 269, 119129.
  • Brouillet E., Condé F., Beal M. F. and Hantraye P. (1999) Replicating Huntington's disease phenotype in experimental animals. Prog. Neurobiol. 59, 427468.
  • Browne S. E., Bowling A. C., MacGarvey U., Baik M. J., Berger S. C., Muqit M. M., Bird E. D. and Beal M. F. (1997) Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646653.
  • Browne S. E., Ferrante R. J. and Beal M. F. (1999) Oxidative stress in Huntington's disease. Brain Pathol. 9, 147163.
  • Bush A. I. (2002) Metal complexing agents as therapies for Alzheimer's disease. Neurobiol. Aging 23, 10311038.
  • Calabrese V., Cornelius C., Rizzarelli E., Owen J. B., Dinkova-Kostova A. T. and Butterfield D. A. (2009) Nitric oxide in cell survival: a janus molecule. Antioxid. Redox Signal. 11, 27172739.
  • Canals J. M., Checa N., Marco S., Akerud P., Michels A., Perez-Navarro E., Tolosa E., Arenas E. and Alberch J. (2001) Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J. Neurosci. 21, 117124.
  • Caron N. S., Desmond C. R., Xia J. and Truant R. (2013) Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc. Natl Acad. Sci. USA 110, 1461014615.
  • Cepeda C., Wu N., Andre V. M., Cummings D. M. and Levine M. S. (2007) The corticostriatal pathway in Huntington's disease. Prog. Neurobiol. 81, 253271.
  • Cheah J. H., Kim S. F., Hester L. D., Clancy K. W., Patterson S. E., 3rd, Papadopoulos V. and Snyder S. H. (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51, 431440.
  • Chen C.-M. (2011) Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington's disease. Chang Gung Med. J. 34, 135152.
  • Chen W., Paradkar P. N., Li L. et al. (2009) Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc. Natl Acad. Sci. USA 106, 1626316268.
  • Chen J., Marks E., Lai B., Zhang Z., Duce J. A., Lam L. Q., Volitakis I., Bush A. I., Hersch S. and Fox J. H. (2013a) Iron Accumulates in Huntington's Disease Neurons: Protection by Deferoxamine. PLoS ONE 8, e77023.
  • Chen Y., Khan R. S., Cwanger A. et al. (2013b) Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity. J. Neurosci. 33, 35823587.
  • Cherubini A., Péran P., Caltagirone C., Sabatini U. and Spalletta G. (2009) Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. NeuroImage 48, 2936.
  • Chinnery P. F., Crompton D. E., Birchall D. et al. (2007) Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 130, 110119.
  • Choi B. R., Bang S., Chen Y., Cheah J. H. and Kim S. F. (2013) PKA modulates iron trafficking in the striatum via small GTPase, Rhes. Neuroscience 253, 214220.
  • Choo Y. S., Johnson G. V. W., MacDonald M., Detloff P. J. and Lesort M. (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 13, 14071420.
  • Cicchetti F., Prensa L., Wu Y. and Parent A. (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington's disease. Brain Res. Rev. 34, 80101.
  • Cisbani G. and Cicchetti F. (2012) An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis. 3, e382.
  • Connor J. R. and Menzies S. L. (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17, 8393.
  • Coppedè F., Mancuso M., Siciliano G., Migliore L. and Murri L. (2006) Genes and the environment in neurodegeneration. Biosci. Rep. 26, 341367.
  • Cowan C. M., Fan M. M. Y., Fan J., Shehadeh J., Zhang L. Y. J., Graham R. K., Hayden M. R. and Raymond L. A. (2008) Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. J. Neurosci. 28, 1272512735.
  • Crapper McLachlan D. R., Dalton A. J., Kruck T. P., Bell M. Y., Smith W. L., Kalow W. and Andrews D. F. (1991) Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet 337, 13041308.
  • Damiano M., Diguet E., Malgorn C. et al. (2013) A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin. Hum. Mol. Genet. 22, 38693882.
  • Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., Scherzinger E., Wanker E. E., Mangiarini L. and Bates G. P. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537548.
  • Davranche A., Aviolat H., Zeder-Lutz G., Busso D., Altschuh D., Trottier Y. and Klein F. A. C. (2011) Huntingtin affinity for partners is not changed by polyglutamine length: aggregation itself triggers aberrant interactions. Hum. Mol. Genet. 20, 27952806.
  • De Domenico I., Zhang T. Y., Koening C. L. et al. (2010) Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J. Clin. Investig. 120, 23952405.
  • De Rooij K. E., De Koning Gans P. A., Roos R. A., Van Ommen G. J. and Den Dunnen J. T. (1995) Somatic expansion of the (CAG)n repeat in Huntington disease brains. Hum. Genet. 95, 270274.
  • Deng Y. P., Albin R. L., Penney J. B., Young A. B., Anderson K. D. and Reiner A. (2004) Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study. J. Chem. Neuroanat. 27, 143164.
  • Dexter D. T., Wells F. R., Lees A. J., Agid F., Agid Y., Jenner P. and Marsden C. D. (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J. Neurochem. 52, 18301836.
  • Dexter D. T., Carayon A., Javoy-Agid F., Agid Y., Wells F. R., Daniel S. E., Lees A. J., Jenner P. and Marsden C. D. (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114, 19531975.
  • DiFiglia M., Sapp E., Chase K., Schwarz C., Meloni A., Young C., Martin E., Vonsattel J. P., Carraway R. and Reeves S. A. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 10751081.
  • Douaud G., Behrens T. E., Poupon C. et al. (2009) In vivo evidence for the selective subcortical degeneration in Huntington's disease. NeuroImage 46, 958966.
  • Dragatsis I., Efstratiadis A. and Zeitlin S. (1998) Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development 125, 15291539.
  • Dragatsis I., Levine M. S. and Zeitlin S. (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 26, 300306.
  • Drayer B., Burger P., Hurwitz B., Dawson D. and Cain J. (1987) Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? Am. J. Roentgenol. 149, 357363.
  • Dumas E. M., Versluis M. J., van den Bogaard S. J. A. et al. (2012) Elevated brain iron is independent from atrophy in Huntington's Disease. NeuroImage 61, 558564.
  • Duyao M., Ambrose C., Myers R., Novelletto A., Persichetti F., Frontali M., Folstein S., Ross C., Franz M. and Abbott M. (1993) Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat. Genet. 4, 387392.
  • Duyao M. P., Auerbach A. B., Ryan A., Persichetti F., Barnes G. T., McNeil S. M., Ge P., Vonsattel J. P., Gusella J. F. and Joyner A. L. (1995) Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269, 407410.
  • Ehrnhoefer D. E., Duennwald M., Markovic P. et al. (2006) Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet. 15, 27432751.
  • Ehrnhoefer D. E., Butland S. L., Pouladi M. A. and Hayden M. R. (2009) Mouse models of Huntington disease: variations on a theme. Dis. Model. Mech. 2, 123129.
  • Falk J. D., Vargiu P., Foye P. E., Usui H., Perez J., Danielson P. E., Lerner D. L., Bernal J. and Sutcliffe J. G. (1999) Rhes: a striatal-specific Ras homolog related to Dexras1. J. Neurosci. Res. 57, 782788.
  • Feigin A., Ghilardi M. F., Huang C., Ma Y., Carbon M., Guttman M., Paulsen J. S., Ghez C. P. and Eidelberg D. (2006) Preclinical Huntington's disease: compensatory brain responses during learning. Ann. Neurol. 59, 5359.
  • Ferrante R. J., Kowall N. W., Cipolloni P. B., Storey E. and Beal M. F. (1993) Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization. Exp. Neurol. 119, 4671.
  • Ferrante R. J., Gutekunst C. A., Persichetti F., McNeil S. M., Kowall N. W., Gusella J. F., MacDonald M. E., Beal M. F. and Hersch S. M. (1997) Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J. Neurosci. 17, 30523063.
  • Figueredo-Cardenas G., Harris C. L., Anderson K. D. and Reiner A. (1998) Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Exp. Neurol. 149, 356372.
  • Firdaus W. J. J., Wyttenbach A., Giuliano P., Kretz-Remy C., Currie R. W. and Arrigo A.-P. (2006) Huntingtin inclusion bodies are iron-dependent centers of oxidative events. FEBS J. 273, 54285441.
  • Fisher E. R. and Hayden M. R. (2013) Multisource ascertainment of Huntington disease in Canada: prevalence and population at risk. Mov. Disord. n/an/a.
  • Fox J. H., Kama J. A., Lieberman G., Chopra R., Dorsey K., Chopra V., Volitakis I., Cherny R. A., Bush A. I. and Hersch S. (2007) Mechanisms of copper ion mediated Huntington's disease progression. PLoS ONE 2, e334.
  • Friedman A., Arosio P., Finazzi D., Koziorowski D. and Galazka-Friedman J. (2011) Ferritin as an important player in neurodegeneration. Parkinsonism Relat. Disord. 17, 423430.
  • Gafni J., Hermel E., Young J. E., Wellington C. L., Hayden M. R. and Ellerby L. M. (2004) Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J. Biol. Chem. 279, 2021120220.
  • Ganz T. and Nemeth E. (2011) Hepcidin and disorders of iron metabolism. Annu. Rev. Med. 62, 347360.
  • Gauthier L. R., Charrin B. C., Borrell-Pagès M. et al. (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127138.
  • Gelman N., Gorell J. M., Barker P. B., Savage R. M., Spickler E. M., Windham J. P. and Knight R. A. (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210, 759767.
  • Gerlach M., Double K., Riederer P., Hirsch E., Jellinger K., Jenner P., Trautwein A. and Youdim M. B. (1997) Iron in the Parkinsonian substantia nigra. Mov. Disord. 12, 258260.
  • Gerlach M., Double K. L., Ben-Shachar D., Zecca L., Youdim M. B. H. and Riederer P. (2003) Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease. Neurotox. Res. 5, 3544.
  • Giorgini F. and Muchowski P. J. (2005) Connecting the dots in Huntington's disease with protein interaction networks. Genome Biol. 6, 210.
  • Gkouvatsos K., Papanikolaou G. and Pantopoulos K. (2012) Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta 1820, 188202.
  • Goehler H., Lalowski M., Stelzl U. et al. (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol. Cell 15, 853865.
  • Gómez-Tortosa E., MacDonald M. E., Friend J. C. et al. (2001) Quantitative neuropathological changes in presymptomatic Huntington's disease. Ann. Neurol. 49, 2934.
  • Gonitel R., Moffitt H., Sathasivam K., Woodman B., Detloff P. J., Faull R. L. M. and Bates G. P. (2008) DNA instability in postmitotic neurons. Proc. Natl Acad. Sci. USA 105, 34673472.
  • González-Cortés C., Salinas-Lara C., Gómez-López M. A. et al. (2008) Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate. Neurotoxicol. Teratol. 30, 510519.
  • Goula A.-V., Berquist B. R., Wilson D. M., Wheeler V. C., Trottier Y. and Merienne K. (2009) Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet. 5, e1000749.
  • Gregory A. and Hayflick S. J. (2011) Genetics of neurodegeneration with brain iron accumulation. Curr. Neurol. Neurosci. Rep. 11, 254261.
  • Grimaud J., Millar J., Thorpe J. W., Moseley I. F., McDonald W. I. and Miller D. H. (1995) Signal intensity on MRI of basal ganglia in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 59, 306308.
  • Gu M., Gash M. T., Mann V. M., Javoy-Agid F., Cooper J. M. and Schapira A. H. (1996) Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol. 39, 385389.
  • Guo J., Zhu P., Wu C., Yu L., Zhao S. and Gu X. (2003) In silico analysis indicates a similar gene expression pattern between human brain and testis. Cytogenet. Genome Res. 103, 5862.
  • Gusella J. F. and MacDonald M. E. (2009) Huntington's disease: the case for genetic modifiers. Genome Med. 1, 80.
  • Hadziahmetovic M., Song Y., Wolkow N. et al. (2011) The oral iron chelator deferiprone protects against iron overload-induced retinal degeneration. Invest. Ophthalmol. Vis. Sci. 52, 959968.
  • Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 16091623.
  • Hands S., Sajjad M. U., Newton M. J. and Wyttenbach A. (2011) In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J. Biol. Chem. 286, 4451244520.
  • Hare D., Ayton S., Bush A. and Lei P. (2013) A delicate balance: iron metabolism and diseases of the brain. Front. Aging Neurosci. 5, 34.
  • Harjes P. and Wanker E. E. (2003) The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci. 28, 425433.
  • Harms L., Meierkord H., Timm G., Pfeiffer L. and Ludolph A. C. (1997) Decreased N-acetyl-aspartate/choline ratio and increased lactate in the frontal lobe of patients with Huntington's disease: a proton magnetic resonance spectroscopy study. J. Neurol. Neurosurg. Psychiatry 62, 2730.
  • Harrison P. M. and Arosio P. (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161203.
  • Harrison L. M., Muller S. H. and Spano D. (2013) Effects of the Ras homolog Rhes on Akt/protein kinase B and glycogen synthase kinase 3 phosphorylation in striatum. Neuroscience 236, 2130.
  • Hayflick S. J., Penzien J. M., Michl W., Sharif U. M., Rosman N. P. and Wheeler P. G. (2001) Cranial MRI changes may precede symptoms in Hallervorden-Spatz syndrome. Pediatr. Neurol. 25, 166169.
  • Henley S. M. D., Wild E. J., Hobbs N. Z., Frost C., MacManus D. G., Barker R. A., Fox N. C. and Tabrizi S. J. (2009) Whole-brain atrophy as a measure of progression in premanifest and early Huntington's disease. Mov. Disord. 24, 932936.
  • Hermel E., Gafni J., Propp S. S. et al. (2004) Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ. 11, 424438.
  • Heron P., Cousins K., Boyd C. and Daya S. (2001) Paradoxical effects of copper and manganese on brain mitochondrial function. Life Sci. 68, 15751583.
  • Heyser C. J., Fienberg A. A., Greengard P. and Gold L. H. (2000) DARPP-32 knockout mice exhibit impaired reversal learning in a discriminated operant task. Brain Res. 867, 122130.
  • Hilditch-Maguire P., Trettel F., Passani L. A., Auerbach A., Persichetti F. and MacDonald M. E. (2000) Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum. Mol. Genet. 9, 27892797.
  • Hiroi N., Fienberg A. A., Haile C. N., Alburges M., Hanson G. R., Greengard P. and Nestler E. J. (1999) Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice. Eur. J. Neurosci. 11, 11141118.
  • Ho L. W., Brown R., Maxwell M., Wyttenbach A. and Rubinsztein D. C. (2001) Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington's disease. J. Med. Genet. 38, 450452.
  • Hogarth P., Gregory A., Kruer M. C. et al. (2013) New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 80, 268275.
  • Huang X., Atwood C. S., Hartshorn M. A. et al. (1999a) The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 76097616.
  • Huang X., Cuajungco M. P., Atwood C. S. et al. (1999b) Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274, 3711137116.
  • Jellinger K. A. (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson's disease. Drugs Aging 14, 115140.
  • Jensen J. H., Chandra R., Ramani A., Lu H., Johnson G., Lee S.-P., Kaczynski K. and Helpern J. A. (2006) Magnetic field correlation imaging. Magn. Reson. Med. 55, 13501361.
  • Jeong S. Y. and David S. (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J. Biol. Chem. 278, 2714427148.
  • Jurgens C. K., van de Wiel L., van Es A. C., Grimbergen Y. M., Witjes-Ane M. N., van der Grond J., Middelkoop H. A. and Roos R. A. (2008) Basal ganglia volume and clinical correlates in ‘preclinical’ Huntington's disease. J. Neurol. 255, 17851791.
  • Jurgens C. K., Jasinschi R., Ekin A., Witjes-Ané M.-N. W., Middelkoop H., van der Grond J. and Roos R. A. C. (2010) MRI T2 Hypointensities in basal ganglia of premanifest Huntington's disease. PLoS Curr. 2, RRN1173.
  • Kalchman M. A., Graham R. K., Xia G., Koide H. B., Hodgson J. G., Graham K. C., Goldberg Y. P., Gietz R. D., Pickart C. M. and Hayden M. R. (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem. 271, 1938519394.
  • Kasischke K. A., Vishwasrao H. D., Fisher P. J., Zipfel W. R. and Webb W. W. (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99103.
  • Kaur D., Yantiri F., Rajagopalan S. et al. (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 37, 899909.
  • Kim Y. J., Yi Y., Sapp E., Wang Y., Cuiffo B., Kegel K. B., Qin Z. H., Aronin N. and DiFiglia M. (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl Acad. Sci. USA 98, 1278412789.
  • Kim M. W., Chelliah Y., Kim S. W., Otwinowski Z. and Bezprozvanny I. (2009) Secondary structure of Huntingtin amino-terminal region. Structure 17, 12051212.
  • Kitzberger R., Madl C. and Ferenci P. (2005) Wilson disease. Metab. Brain Dis. 20, 295302.
  • Koeppen A. H. (1995) The history of iron in the brain. J. Neurol. Sci. 134(Suppl), 19.
  • Kono S. (2012) Aceruloplasminemia. Curr. Drug Targets 13, 11901199.
  • Krause A., Neitz S., Mägert H. J., Schulz A., Forssmann W. G., Schulz-Knappe P. and Adermann K. (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147150.
  • Kruer M. C., Boddaert N., Schneider S. A., Houlden H., Bhatia K. P., Gregory A., Anderson J. C., Rooney W. D., Hogarth P. and Hayflick S. J. (2012) Neuroimaging features of neurodegeneration with brain iron accumulation. Am. J. Neuroradiol. 33, 407414.
  • Kurz T., Gustafsson B. and Brunk U. T. (2006) Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J. 273, 31063117.
  • Lambe T., Simpson R. J., Dawson S. et al. (2009) Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood 113, 18051808.
  • Langkammer C., Krebs N., Goessler W., Scheurer E., Ebner F., Yen K., Fazekas F. and Ropele S. (2010) Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257, 455462.
  • Leavitt B. R., Guttman J. A., Hodgson J. G., Kimel G. H., Singaraja R., Vogl A. W. and Hayden M. R. (2001) Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313324.
  • Leavitt B. R., Van Raamsdonk J. M., Shehadeh J., Fernandes H., Murphy Z., Graham R. K., Wellington C. L., Raymond L. A. and Hayden M. R. (2006) Wild-type huntingtin protects neurons from excitotoxicity. J. Neurochem. 96, 11211129.
  • Lee H. K., Barbarosie M., Kameyama K., Bear M. F. and Huganir R. L. (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955959.
  • Lee A., Anderson A. R., Barnett A. C., Chan A. and Pow D. V. (2011) Expression of multiple glutamate transporter splice variants in the rodent testis. Asian J. Androl. 13, 254265.
  • Lei P., Ayton S., Finkelstein D. I. et al. (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med. 18, 291295.
  • Leveugle B., Mazurier J., Legrand D., Mazurier C., Montreuil J. and Spik G. (1993) Lactotransferrin binding to its platelet receptor inhibits platelet aggregation. Eur. J. Biochem. 213, 12051211.
  • Levi S., Santambrogio P., Albertini A. and Arosio P. (1993) Human ferritin H-chains can be obtained in non-assembled stable forms which have ferroxidase activity. FEBS Lett. 336, 309312.
  • Levi S., Corsi B., Bosisio M., Invernizzi R., Volz A., Sanford D., Arosio P. and Drysdale J. (2001) A human mitochondrial ferritin encoded by an intronless gene. J. Biol. Chem. 276, 2443724440.
  • Li X. J. and Li S. (2011) Proteasomal dysfunction in aging and Huntington disease. Neurobiol. Dis. 43, 48.
  • Li J.-Y., Plomann M. and Brundin P. (2003) Huntington's disease: a synaptopathy? Trends Mol. Med. 9, 414420.
  • Lodi R., Schapira A. H., Manners D., Styles P., Wood N. W., Taylor D. J. and Warner T. T. (2000) Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Ann. Neurol. 48, 7276.
  • Lumsden A. L., Henshall T. L., Dayan S., Lardelli M. T. and Richards R. I. (2007) Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum. Mol. Genet. 16, 19051920.
  • Lunkes A., Lindenberg K. S., Ben-Haïem L., Weber C., Devys D., Landwehrmeyer G. B., Mandel J.-L. and Trottier Y. (2002) Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol. Cell 10, 259269.
  • Luo S., Vacher C., Davies J. E. and Rubinsztein D. C. (2005) Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J. Cell Biol. 169, 647656.
  • MacDonald M. E. and Gusella J. F. (1996) Huntington's disease: translating a CAG repeat into a pathogenic mechanism. Curr. Opin. Neurobiol. 6, 638643.
  • Martin J. B. and Gusella J. F. (1986) Huntington's disease. Pathogenesis and management. N. Engl. J. Med. 315, 12671276.
  • Martinez-Vicente M., Talloczy Z., Wong E. et al. (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13, 567576.
  • McGahan M. C., Harned J., Mukunnemkeril M., Goralska M., Fleisher L. and Ferrell J. B. (2005) Iron alters glutamate secretion by regulating cytosolic aconitase activity. Am. J. Physiol. Cell Physiol. 288, C1117C1124.
  • Mealer R. G., Subramaniam S. and Snyder S. H. (2013) Rhes deletion is neuroprotective in the 3-nitropropionic acid model of Huntington's disease. J. Neurosci. 33, 42064210.
  • Mealer R. G., Murray A. J., Shahani N., Subramaniam S. and Snyder S. H. (2014) Rhes, a Striatal-selective Protein Implicated in Huntington Disease, Binds Beclin-1 and Activates Autophagy. J. Biol. Chem. 289, 35473554.
  • Menalled L., Zanjani H., MacKenzie L., Koppel A., Carpenter E., Zeitlin S. and Chesselet M. F. (2000) Decrease in striatal enkephalin mRNA in mouse models of Huntington's disease. Exp. Neurol. 162, 328342.
  • Metzler M., Chen N., Helgason C. D., Graham R. K., Nichol K., McCutcheon K., Nasir J., Humphries R. K., Raymond L. A. and Hayden M. R. (1999) Life without huntingtin: normal differentiation into functional neurons. J. Neurochem. 72, 10091018.
  • Metzler M., Helgason C. D., Dragatsis I., Zhang T., Gan L., Pineault N., Zeitlin S. O., Humphries R. K. and Hayden M. R. (2000) Huntingtin is required for normal hematopoiesis. Hum. Mol. Genet. 9, 387394.
  • Metzler M., Legendre-Guillemin V., Gan L., Chopra V., Kwok A., McPherson P. S. and Hayden M. R. (2001) HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem. 276, 3927139276.
  • Metzler M., Gan L., Wong T. P. et al. (2007) NMDA receptor function and NMDA receptor-dependent phosphorylation of huntingtin is altered by the endocytic protein HIP1. J. Neurosci. 27, 22982308.
  • Michaeli S., Oz G., Sorce D. J., Garwood M., Ugurbil K., Majestic S. and Tuite P. (2007) Assessment of brain iron and neuronal integrity in patients with Parkinson's disease using novel MRI contrasts. Mov. Disord. 22, 334340.
  • Mitra S., Tsvetkov A. S. and Finkbeiner S. (2009) Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease. J. Biol. Chem. 284, 43984403.
  • Miyajima H., Takahashi Y., Kamata T., Shimizu H., Sakai N. and Gitlin J. D. (1997) Use of desferrioxamine in the treatment of aceruloplasminemia. Ann. Neurol. 41, 404407.
  • Montine T. J., Beal M. F., Robertson D., Cudkowicz M. E., Biaggioni I., O'Donnell H., Zackert W. E., Roberts L. J. and Morrow J. D. (1999) Cerebrospinal fluid F2-isoprostanes are elevated in Huntington's disease. Neurology 52, 11041105.
  • Morrison P. J. and Nevin N. C. (1994) Serum iron, total iron binding capacity and ferritin in early Huntington disease patients. Ir. J. Med. Sci. 163, 236237.
  • Moumné L., Betuing S. and Caboche J. (2013) Multiple aspects of gene dysregulation in Huntington's Disease. Front. Neurol. 4, 127.
  • Myers R. H., Vonsattel J. P., Paskevich P. A., Kiely D. K., Stevens T. J., Cupples L. A., Richardson E. P. and Bird E. D. (1991) Decreased neuronal and increased oligodendroglial densities in Huntington's disease caudate nucleus. J. Neuropathol. Exp. Neurol. 50, 729742.
  • Nagata E., Sawa A., Ross C. A. and Snyder S. H. (2004) Autophagosome-like vacuole formation in Huntington's disease lymphoblasts. NeuroReport 15, 13251328.
  • Nasir J., Floresco S. B., O'Kusky J. R., Diewert V. M., Richman J. M., Zeisler J., Borowski A., Marth J. D., Phillips A. G. and Hayden M. R. (1995) Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811823.
  • Nemeth E., Rivera S., Gabayan V., Keller C., Taudorf S., Pedersen B. K. and Ganz T. (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 113, 12711276.
  • Nguyen T., Hamby A. and Massa S. M. (2005) Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’ disease mouse model. Proc. Natl Acad. Sci. USA 102, 1184011845.
  • Nishii T., Hirata A., Masaki T., Kaida K., Nakamura R., Motoyoshi K. and Kamakura K. (2000) Reduced signal intensity of T2 weighted MR imaging of thalamus and putamen in multiple sclerosis in Japan. Rinsho Shinkeigaku 40, 677682.
  • Nopoulos P. C., Aylward E. H., Ross C. A. et al. and Coordinators of the Huntington Study G. (2011) Smaller intracranial volume in prodromal Huntington's disease: evidence for abnormal neurodevelopment. Brain 134, 137142.
  • Novak M. J. U. and Tabrizi S. J. (2010) Huntington's disease. BMJ 340, c3109.
  • Okamoto S., Pouladi M. A., Talantova M. et al. (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 15, 14071413.
  • O'Kusky J. R., Nasir J., Cicchetti F., Parent A. and Hayden M. R. (1999) Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the Huntington's disease gene. Brain Res. 818, 468479.
  • Pandolfo M. and Hausmann L. (2013) Deferiprone for the treatment of Friedreich's ataxia. J. Neurochem. 126(Suppl 1), 142146.
  • Pantopoulos K. (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann. N. Y. Acad. Sci. 1012, 113.
  • Pantopoulos K., Porwal S. K., Tartakoff A. and Devireddy L. (2012) Mechanisms of mammalian iron homeostasis. Biochemistry 51, 57055724.
  • Park C. H., Valore E. V., Waring A. J. and Ganz T. (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 78067810.
  • Paulsen J. S., Nopoulos P. C., Aylward E., Ross C. A., Johnson H., Magnotta V. A., Juhl A., Pierson R. K., Mills J., Langbehn D. and Nance M. (2010) PREDICT-HD investigators and coordinators of the Huntington's study group: striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res. Bull. 82, 201207.
  • Pavese N., Gerhard A., Tai Y. F., Ho A. K., Turkheimer F., Barker R. A., Brooks D. J. and Piccini P. (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66, 16381643.
  • Pérez-De La Cruz V., González-Cortés C., Galván-Arzate S., Medina-Campos O. N., Pérez-Severiano F., Ali S. F., Pedraza-Chaverrí J. and Santamaría A. (2005) Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135, 463474.
  • Pérez-De La Cruz V., Elinos-Calderón D., Robledo-Arratia Y., Medina-Campos O. N., Pedraza-Chaverrí J., Ali S. F. and Santamaría A. (2009) Targeting oxidative/nitrergic stress ameliorates motor impairment, and attenuates synaptic mitochondrial dysfunction and lipid peroxidation in two models of Huntington's disease. Behav. Brain Res. 199, 210217.
  • Pfefferbaum A., Adalsteinsson E., Rohlfing T. and Sullivan E. V. (2009) MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage 47, 493500.
  • Philpott C. C. (2012) Coming into view: eukaryotic iron chaperones and intracellular iron delivery. J. Biol. Chem. 287, 1351813523.
  • Pujol J., Junqué C., Vendrell P., Grau J. M., Martí-Vilalta J. L., Olivé C. and Gili J. (1992) Biological significance of iron-related magnetic resonance imaging changes in the brain. Arch. Neurol. 49, 711717.
  • Qin L., Liu Y., Hong J.-S. and Crews F. T. (2013) NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 61, 855868.
  • Quintero G. C., Spano D., Lahoste G. J. and Harrison L. M. (2008) The Ras homolog Rhes affects dopamine D1 and D2 receptor-mediated behavior in mice. NeuroReport 19, 15631566.
  • Ranen N. G., Stine O. C., Abbott M. H., Sherr M., Codori A. M., Franz M. L., Chao N. I., Chung A. S., Pleasant N. and Callahan C. (1995) Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am. J. Hum. Genet. 57, 593602.
  • Rangone H., Poizat G., Troncoso J., Ross C. A., MacDonald M. E., Saudou F. and Humbert S. (2004) The serum- and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine 421 of huntingtin. Eur. J. Neurosci. 19, 273279.
  • Rasia R. M., Bertoncini C. W., Marsh D., Hoyer W., Cherny D., Zweckstetter M., Griesinger C., Jovin T. M. and Fernández C. O. (2005) Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson's disease. Proc. Natl Acad. Sci. USA 102, 42944299.
  • Rathore K. I., Redensek A. and David S. (2012) Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1. Glia 60, 738750.
  • Ravikumar B., Vacher C., Berger Z., Davies J. E., Luo S., Oroz L. G., Scaravilli F., Easton D. F., Duden R. and Os;Kane C. J. and Rubinsztein D. C. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585595.
  • Reddy P. H. and Shirendeb U. P. (2012) Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochim. Biophys. Acta 1822, 101110.
  • Richardson D. R., Lane D. J. R., Becker E. M., Huang M. L.-H., Whitnall M., Suryo Rahmanto Y., Sheftel A. D. and Ponka P. (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl Acad. Sci. USA 107, 1077510782.
  • Riederer P., Sofic E., Rausch W. D., Schmidt B., Reynolds G. P., Jellinger K. and Youdim M. B. (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52, 515520.
  • Rigamonti D., Bauer J. H., De-Fraja C. et al. (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20, 37053713.
  • Rigamonti D., Sipione S., Goffredo D., Zuccato C., Fossale E. and Cattaneo E. (2001) Huntingtins neuroprotective activity occurs via inhibition of procaspase-9 processing. J. Biol. Chem. 276, 1454514548.
  • Rosas H. D., Goodman J., Chen Y. I., Jenkins B. G., Kennedy D. N., Makris N., Patti M., Seidman L. J., Beal M. F. and Koroshetz W. J. (2001) Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 57, 10251028.
  • Rosas H. D., Koroshetz W. J., Chen Y. I. et al. (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60, 16151620.
  • Rosas H. D., Tuch D. S., Hevelone N. D., Zaleta A. K., Vangel M., Hersch S. M. and Salat D. H. (2006) Diffusion tensor imaging in presymptomatic and early Huntington's disease: selective white matter pathology and its relationship to clinical measures. Mov. Disord. 21, 13171325.
  • Rosas H. D., Chen Y. I., Doros G., Salat D. H., Chen N.-K., Kwong K. K., Bush A., Fox J. and Hersch S. M. (2012) Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch. Neurol. 69, 887893.
  • Ross S. L., Tran L., Winters A. et al. (2012) Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Metab. 15, 905917.
  • Rouault T. A. (2001) Systemic iron metabolism: a review and implications for brain iron metabolism. Pediatr. Neurol. 25, 130137.
  • Rouault T. A. (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat. Rev. Neurosci. 14, 551564.
  • Roze E., Saudou F. and Caboche J. (2008) Pathophysiology of Huntington's disease: from huntingtin functions to potential treatments. Curr. Opin. Neurol. 21, 497503.
  • Rubinsztein D. C., Barton D. E., Davison B. C. and Ferguson-Smith M. A. (1993) Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington's disease and CAG repeat number. Hum. Mol. Genet. 2, 17131715.
  • Russo N., Edwards M., Andrews T., O'Brien M. and Bhatia K. P. (2004) Hereditary haemochromatosis is unlikely to cause movement disorders–a critical review. J. Neurol. 251, 849852.
  • Sanchez-Castaneda C., Cherubini A., Elifani F., Peran P., Orobello S., Capelli G., Sabatini U. and Squitieri F. (2013) Seeking Huntington disease biomarkers by multimodal, cross-sectional basal ganglia imaging. Hum. Brain Mapp. 34, 16251635.
  • Santambrogio P., Biasiotto G., Sanvito F., Olivieri S., Arosio P. and Levi S. (2007) Mitochondrial ferritin expression in adult mouse tissues. J. Histochem. Cytochem. 55, 11291137.
  • Sassone J., Colciago C., Cislaghi G., Silani V. and Ciammola A. (2009) Huntington's disease: the current state of research with peripheral tissues. Exp. Neurol. 219, 385397.
  • Sbodio J. I., Paul B. D., Machamer C. E. and Snyder S. H. (2013) Golgi protein ACBD3 mediates neurotoxicity associated with Huntington's disease. Cell Rep. 4, 890897.
  • Schapira A. and Lodi R. (2004) Assessment of in vitro and in vivo mitochondrial function in Friedreich's ataxia and Huntington's disease. Methods Mol. Biol. 277, 293307.
  • Schenck J. F. (2003) Magnetic resonance imaging of brain iron. J. Neurol. Sci. 207, 99102.
  • Schilling B., Gafni J., Torcassi C. et al. (2006) Huntingtin phosphorylation sites mapped by mass spectrometry. Modulation of cleavage and toxicity. J. Biol. Chem. 281, 2368623697.
  • Schrag M., Dickson A., Jiffry A., Kirsch D., Vinters H. V. and Kirsch W. (2010) The effect of formalin fixation on the levels of brain transition metals in archived samples. Biometals 23, 11231127.
  • Schulz K., Vulpe C. D., Harris L. Z. and David S. (2011) Iron efflux from oligodendrocytes is differentially regulated in gray and white matter. J. Neurosci. 31, 1330113311.
  • Schwarcz R., Bennett J. P. and Coyle J. T. (1977) Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington's Disease. J. Neurochem. 28, 867869.
  • Semaka A., Kay C., Doty C., Collins J. A., Bijlsma E. K., Richards F., Goldberg Y. P. and Hayden M. R. (2013) CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J. Med. Genet. 50, 696703.
  • Seredenina T., Gokce O. and Luthi-Carter R. (2011) Decreased striatal RGS2 expression is neuroprotective in Huntington's disease (HD) and exemplifies a compensatory aspect of HD-induced gene regulation. PLoS ONE 6, e22231.
  • Sheline C. T. and Choi D. W. (2004) Cu2 +  toxicity inhibition of mitochondrial dehydrogenases in vitro and in vivo. Ann. Neurol. 55, 645653.
  • Shi H., Bencze K. Z., Stemmler T. L. and Philpott C. C. (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320, 12071210.
  • Shimojo M. (2008) Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. J. Biol. Chem. 283, 3488034886.
  • Shoham S. and Youdim M. B. (2000) Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases. Cell. Mol. Biol. 46, 743760.
  • Simmons D. A., Casale M., Alcon B., Pham N., Narayan N. and Lynch G. (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 55, 10741084.
  • Smith M. A., Sayre L. M., Monnier V. M. and Perry G. (1996) Oxidative posttranslational modifications in Alzheimer disease. A possible pathogenic role in the formation of senile plaques and neurofibrillary tangles. Mol. Chem. Neuropathol. 28, 4148.
  • Sofic E., Riederer P., Heinsen H., Beckmann H., Reynolds G. P., Hebenstreit G. and Youdim M. B. (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural Transm. 74, 199205.
  • Song C., Zhang Y., Parsons C. G. and Liu Y. F. (2003) Expression of polyglutamine-expanded huntingtin induces tyrosine phosphorylation of N-methyl-D-aspartate receptors. J. Biol. Chem. 278, 3336433369.
  • Sorolla M. A., Reverter-Branchat G., Tamarit J., Ferrer I., Ros J. and Cabiscol E. (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biol. Med. 45, 667678.
  • Sorolla M. A., Rodríguez-Colman M. J., Tamarit J., Ortega Z., Lucas J. J., Ferrer I., Ros J. and Cabiscol E. (2010) Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radical Biol. Med. 49, 612621.
  • Sorolla M. A., Rodríguez-Colman M. J., Vall-llaura N., Tamarit J., Ros J. and Cabiscol E. (2012) Protein oxidation in Huntington disease. BioFactors 38, 173185.
  • Stachowski E. K. and Schwarcz R. (2012) Regulation of quinolinic acid neosynthesis in mouse, rat and human brain by iron and iron chelators in vitro. J. Neural Transm. 119, 123131.
  • Stankiewicz J., Panter S. S., Neema M., Arora A., Batt C. E. and Bakshi R. (2007) Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics 4, 371386.
  • Steffan J. S., Agrawal N., Pallos J. et al. (2004) SUMO modification of Huntingtin and Huntington's disease pathology. Science 304, 100104.
  • Subramaniam S., Sixt K. M., Barrow R. and Snyder S. H. (2009) Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324, 13271330.
  • Sun Y., Savanenin A., Reddy P. H. and Liu Y. F. (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J. Biol. Chem. 276, 2471324718.
  • Surmeier D. J., Song W. J. and Yan Z. (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 65796591.
  • Tabrizi S. J., Langbehn D. R., Leavitt B. R. et al. (2009) Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 8, 791801.
  • Tabrizi S. J., Scahill R. I., Durr A. et al. (2011) Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 10, 3142.
  • Tang T.-S., Tu H., Chan E. Y. W., Maximov A., Wang Z., Wellington C. L., Hayden M. R. and Bezprozvanny I. (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39, 227239.
  • Tang T.-S., Slow E., Lupu V., Stavrovskaya I. G., Sugimori M., Llinás R., Kristal B. S., Hayden M. R. and Bezprozvanny I. (2005) Disturbed Ca2 +  signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc. Natl Acad. Sci. USA 102, 26022607.
  • Tartari M., Gissi C., Lo Sardo V., Zuccato C., Picardi E., Pesole G. and Cattaneo E. (2008) Phylogenetic comparison of huntingtin homologues reveals the appearance of a primitive polyQ in sea urchin. Mol. Biol. Evol. 25, 330338.
  • Thompson L. M., Aiken C. T., Kaltenbach L. S., et al. (2009) IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J. Cell Biol. 187, 10831099.
  • Thu D. C. V., Oorschot D. E., Tippett L. J., Nana A. L., Hogg V. M., Synek B. J., Luthi-Carter R., Waldvogel H. J. and Faull R. L. M. (2010) Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington's disease. Brain 133, 10941110.
  • Trettel F., Rigamonti D., Hilditch-Maguire P., Wheeler V. C., Sharp A. H., Persichetti F., Cattaneo E. and MacDonald M. E. (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum. Mol. Genet. 9, 27992809.
  • Túnez I., Sánchez-López F., Agüera E., Fernández-Bolaños R., Sánchez F. M. and Tasset-Cuevas I. (2011) Important role of oxidative stress biomarkers in Huntington's disease. J. Med. Chem. 54, 56025606.
  • Valdes Hernandez M. C., Jeong T. H., Murray C., Bastin M. E., Chappell F. M., Deary I. J. and Wardlaw J. M. (2011) Reliability of two techniques for assessing cerebral iron deposits with structural magnetic resonance imaging. J. Magn. Reson. Imaging 33, 5461.
  • Valentine J. S. and Hart P. J. (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 100, 36173622.
  • Van Raamsdonk J. M., Pearson J., Rogers D. A., Bissada N., Vogl A. W., Hayden M. R. and Leavitt B. R. (2005) Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 14, 13791392.
  • Van Raamsdonk J. M., Gibson W. T., Pearson J., Murphy Z., Lu G., Leavitt B. R. and Hayden M. R. (2006) Body weight is modulated by levels of full-length huntingtin. Hum. Mol. Genet. 15, 15131523.
  • Van Raamsdonk J. M., Murphy Z., Selva D. M. et al. (2007) Testicular degeneration in Huntington disease. Neurobiol. Dis. 26, 512520.
  • Vargiu P., De Abajo R., Garcia-Ranea J. A., Valencia A., Santisteban P., Crespo P. and Bernal J. (2004) The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors. Oncogene 23, 559568.
  • Velier J., Kim M., Schwarz C., Kim T. W., Sapp E., Chase K., Aronin N. and DiFiglia M. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 3440.
  • Vonsattel J. P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D. and Richardson E. P. (1985) Neuropathological classification of Huntington& apos;s disease. J. Neuropathol. Exp. Neurol. 44, 559577.
  • Vymazal J., Hajek M., Patronas N., Giedd J. N., Bulte J. W., Baumgarner C., Tran V. and Brooks R. A. (1995) The quantitative relation between T1-weighted and T2-weighted MRI of normal gray matter and iron concentration. J. Magn. Reson. Imaging 5, 554560.
  • Vymazal J., Klempír J., Jech R., Zidovská J., Syka M., Růzicka E. and Roth J. (2007) MR relaxometry in Huntington's disease: correlation between imaging, genetic and clinical parameters. J. Neurol. Sci. 263, 2025.
  • Walker F. O. (2010) Does hereditary hemochromatosis influence the age of onset of Huntington's disease? Mov. Disord. 25, 946.
  • Wang J. and Pantopoulos K. (2011) Regulation of cellular iron metabolism. Biochem. J. 434, 365381.
  • Warby S. C., Chan E. Y., Metzler M., Gan L., Singaraja R. R., Crocker S. F., Robertson H. A. and Hayden M. R. (2005) Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum. Mol. Genet. 14, 15691577.
  • Weiss G. (2009) Iron metabolism in the anemia of chronic disease. Biochim. Biophys. Acta 1790, 682693.
  • Wellington C. L., Ellerby L. M., Gutekunst C.-A. et al. (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J. Neurosci. 22, 78627872.
  • Weydt P., Pineda V. V., Torrence A. E. et al. (2006) Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab. 4, 349362.
  • Williams B. B., Kwakye G. F., Wegrzynowicz M., Li D., Aschner M., Erikson K. M. and Bowman A. B. (2010a) Altered manganese homeostasis and manganese toxicity in a Huntingtons disease striatal cell model are not explained by defects in the iron transport system. Toxicol. Sci. 117, 169179.
  • Williams B. B., Li D., Wegrzynowicz M., Vadodaria B. K., Anderson J. G., Kwakye G. F., Aschner M., Erikson K. M. and Bowman A. B. (2010b) Disease-toxicant screen reveals a neuroprotective interaction between Huntingtons disease and manganese exposure. J. Neurochem. 112, 227237.
  • Wyttenbach A., Sauvageot O., Carmichael J., Diaz-Latoud C., Arrigo A.-P. and Rubinsztein D. C. (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 11, 11371151.
  • Xia J., Lee D. H., Taylor J., Vandelft M. and Truant R. (2003) Huntingtin contains a highly conserved nuclear export signal. Hum. Mol. Genet. 12, 13931403.
  • Yanai A., Huang K., Kang R. et al. (2006) Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat. Neurosci. 9, 824831.
  • Youdim M. B., Ben-Shachar D. and Riederer P. (1993) The possible role of iron in the etiopathology of Parkinson's disease. Mov. Disord. 8, 112.
  • Youdim M. B. H., Stephenson G. and Ben-Shachar D. (2004) Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann. N. Y. Acad. Sci. 1012, 306325.
  • Zala D., Hinckelmann M.-V., Yu H., Lyra da Cunha M. M., Liot G., Cordelières F. P., Marco S. and Saudou F. (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152, 479491.
  • Zecca L., Youdim M. B. H., Riederer P., Connor J. R. and Crichton R. R. (2004) Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5, 863873.
  • Zeron M. M., Hansson O., Chen N., Wellington C. L., Leavitt B. R., Brundin P., Hayden M. R. and Raymond L. A. (2002) Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33, 849860.
  • Zhang Y., Li M., Drozda M.et al. (2003) Depletion of wild-type huntingtin in mouse models of neurologic diseases. J. Neurochem. 87, 101106.
  • Zhang Y., Leavitt B. R., Van Raamsdonk J. M., Dragatsis I., Goldowitz D., MacDonald M. E., Hayden M. R. and Friedlander R. M. (2006) Huntingtin inhibits caspase-3 activation. EMBO J. 25, 58965906.
  • Zhao G., Arosio P. and Chasteen N. D. (2006) Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study. Biochemistry 45, 34293436.
  • Zheng S., Clabough E. B., Sarkar S., Futter M., Rubinsztein D. C. and Zeitlin S. O. (2010) Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet. 6, e1000838.
  • Zuccato C. and Cattaneo E. (2007) Role of brain-derived neurotrophic factor in Huntington's disease. Prog. Neurobiol. 81, 294330.
  • Zuccato C., Valenza M. and Cattaneo E. (2010) Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol. Rev. 90, 905981.