SEARCH

SEARCH BY CITATION

References

  • Beilina A., Rudenko I. N., Alice K., et al. (2014) Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc. Natl Acad. Sci. USA 111, 26262631.
  • Berger Z., Smith K. A. and LaVoie M. J. (2010) Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry 49, 55115523.
  • Civiero L., Vancraenenbroeck R., Belluzzi E. et al. (2012) Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS ONE 7, e43472.
  • Dächsel J. C., Nishioka K., Vilariño-Güell C. et al. (2010) Heterodimerization of Lrrk1–Lrrk2: implications for LRRK2-associated Parkinson disease. Mech. Ageing Dev. 131, 210214.
  • Daniëls V., Vancraenenbroeck R., Law B. M. H. et al. (2010) Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. J. Neurochem. 116, 304315.
  • Daniëls V., Baekelandt V. and Taymans J.-M. (2011) On the road to leucine-rich repeat kinase 2 signalling: evidence from cellular and in vivo studies. Neurosignals 19, 115.
  • Davies P., Hinkle K. M., Sukar N. N. et al. (2013) Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochem. J. 453, 101113.
  • Deng X., Dzamko N., Prescott A. et al. (2011) Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nat. Chem. Biol. 7, 203205.
  • Dodson M. W., Zhang T., Jiang C., Chen S. and Guo M. (2012) Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum. Mol. Genet. 21, 13501363.
  • Dzamko N., Deak M., Hentati F., Reith A. D., Prescott A. R., Alessi D. R. and Nichols R. J. (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser 910/Ser 935, disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem. J. 430, 405413.
  • Gajadhar A. and Guha A. (2010) A proximity ligation assay using transiently transfected, epitope-tagged proteins: application for in situ detection of dimerized receptor tyrosine kinases. Biotechniques 48, 145152.
  • Gloeckner C. J., Schumacher A., Boldt K. and Ueffing M. (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J. Neurochem. 109, 959968.
  • Gloeckner C. J., Boldt K., von Zweydorf F., Helm S., Wiesent L., Sarioglu H. and Ueffing M. (2010) Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J. Proteome Res. 9, 17381745.
  • Greggio E. and Singleton A. (2007) Kinase signaling pathways as potential targets in the treatment of Parkinson's disease. Expert Rev. Proteomics 4, 783792.
  • Greggio E., Lewis P. A., van der Brug M. P., Ahmad R., Alice K., Ding J., Beilina A., Baker A. K. and Cookson M. R. (2007) Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J. Neurochem. 102, 93102.
  • Greggio E., Zambrano I., Alice K. et al. (2008) The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem. 283, 1690616914.
  • Hanafusa H., Ishikawa K., Kedashiro S., Saigo T., Iemura S.-I., Natsume T., Komada M., Shibuya H., Nara A. and Matsumoto K. (2011) Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor. Nat. Commun. 2, 158.
  • Haugarvoll K., Toft M., Ross O. A., White L. R., Aasly J. O. and Farrer M. J. (2007) Variants in the LRRK1 gene and susceptibility to Parkinson's disease in Norway. Neurosci. Lett. 416, 299301.
  • Haugarvoll K., Rademakers R., Kachergus J. M. et al. (2008) Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease. Neurology 70, 14561460.
  • Healy D. G., Falchi M., O'Sullivan S. S. et al. (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7, 583590.
  • Hermanson S. B., Carlson C. B., Riddle S. M. and Zhao J. (2012) Screening for novel LRRK2 inhibitors using a high-throughput TR-FRET cellular assay for LRRK2 Ser935 phosphorylation. PLoS ONE 7, e43580.
  • Higashi S., Moore D. J., Yamamoto R. et al. (2009) Abnormal localization of leucine-rich repeat kinase 2 to the endosomal-lysosomal compartment in lewy body disease. J. Neuropathol. Exp. Neurol. 68, 9941005.
  • Hsu C. H., Chan D., Greggio E. et al. (2010a) MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J. Neurochem. 112, 15931604.
  • Hsu C. H., Chan D. and Wolozin B. (2010b) LRRK2 and the stress response: interaction with MKKs and JNK-interacting proteins. Neurodegener. Dis. 7, 6875.
  • Ito G., Okai T., Fujino G., Takeda K., Ichijo H., Katada T. and Iwatsubo T. (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 46, 13801388.
  • Klein C. L., Rovelli G., Springer W., Schall C., Gasser T. and Kahle P. J. (2009) Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. J. Neurochem. 111, 703715.
  • Lewis P. A. (2009) The function of ROCO proteins in health and disease. Biol. Cell 101, 183191.
  • Li X., Wang Q. J., Pan N., Lee S., Zhao Y., Chait B. T. and Yue Z. (2011) Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson's disease. PLoS ONE 6, e17153.
  • Li J., Soroka J. and Buchner J. (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta 1823, 624635.
  • Lobbestael E., Zhao J., Rudenko I. N. et al. (2013) Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle. Biochem. J. 456, 119128.
  • Marín I. (2006) The Parkinson disease gene LRRK2: evolutionary and structural insights. Mol. Biol. Evol. 23, 24232433.
  • Marín I. (2008) Ancient origin of the Parkinson disease gene LRRK2. J. Mol. Evol. 67, 4150.
  • Marín I., van Egmond W.N. and Van Haastert P. J. M. (2008) The Roco protein family: a functional perspective. FASEB J. 22, 31033110.
  • Matta S., Van Kolen K., da Cunha R. et al. (2012) LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 75, 10081021.
  • Mellacheruvu D., Wright Z., Couzens A. L. et al. (2013) The CRAPome: a contaminant repository for affinity purification – mass spectrometry data. Nat. Meth. 10, 730736.
  • Michaelis M., Bliss J., Arnold S. C. et al. (2008) Cisplatin-resistant neuroblastoma cells express enhanced levels of epidermal growth factor receptor (EGFR) and are sensitive to treatment with EGFR-specific toxins. Clin. Cancer Res. 14, 65316537.
  • Moore D. J. (2008) The biology and pathobiology of LRRK2: implications for Parkinson's disease. Parkinsonism Relat. Disord. 14(Suppl 2), S92S98.
  • Nichols R. J., Dzamko N., Morrice N. A. et al. (2010) 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. Biochem. J. 430, 393404.
  • Osório L., Gijsbers R., Oliveras-Salvá M., Michiels A., Debyser Z., Van den Haute C. and Baekelandt V. (2013) Viral vectors expressing a single microRNA-based short-hairpin RNA result in potent gene silencing in vitro and in vivo. J. Biotechnol. 169, 7181.
  • Paisan-Ruiz C., Jain S., Evans E. W. et al. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595600.
  • Pearl L. H. and Prodromou C. (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271294.
  • Ross O. A., Soto-Ortolaza A. I., Heckman M. G. et al., (2011) Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case-control study. Lancet Neurol. 10, 898908.
  • Satake W., Nakabayashi Y., Mizuta I. et al. (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 13031307.
  • Shin N., Jeong H., Kwon J. et al. (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314, 20552065.
  • Simón-Sánchez J., Schulte C., Bras J. M. et al. (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 13081312.
  • Taylor J. P., Hulihan M. M., Kachergus J. M. et al. (2007) Leucine-rich repeat kinase 1: a paralog of LRRK2 and a candidate gene for Parkinson's disease. Neurogenetics 8, 95102.
  • Taymans J.-M., Vancraenenbroeck R., Ollikainen P., Beilina A., Lobbestael E., De Maeyer M., Baekelandt V. and Cookson M. R. (2011) LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS ONE 6, e23207.
  • Taymans J. -M., Fangye G. and Baekelandt V. (2013) Metabolic labeling of leucine rich repeat kinases 1 and 2 with radioactive phosphate. J. Vis. Exp. 79, e50523.
  • Titz B., Low T., Komisopoulou E., Chen S. S., Rubbi L. and Graeber T. G. (2010) The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization. Oncogene 29, 58955910.
  • Vancraenenbroeck R., Lobbestael E., Maeyer M. D., Baekelandt V. and Taymans J.-M. (2011) Kinases as targets for Parkinson's disease: from genetics to therapy. CNS Neurol. Disord. Drug Targets 10, 724740.
  • Vancraenenbroeck R., Lobbestael E., Weeks S. D., Strelkov S. V., Baekelandt V., Taymans J.-M. and De Maeyer M. (2012) Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. Biochim. Biophys. Acta 1824, 450460.
  • Vancraenenbroeck R., De Raeymaecker J., Lobbestael E., Fangye G., De Maeyer M., Voet A., Baekelandt V. and Taymans J.-M. (2014) In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2. Front. Mol. Neurosci. 7, 51.
  • Wang L., Xie C., Greggio E. et al. (2008) The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J. Neurosci. 28, 33843391.
  • Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J. and Cantley L. C. (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91, 961971.
  • Zimprich A., Biskup S., Leitner P. et al. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601607.