SEARCH

SEARCH BY CITATION

References

  • Amaral A. I., Teixeira A. P., Sonnewald U. and Alves P. M. (2011) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J. Neurosci. Res. 89, 700710.
  • Bak L. K., Iversen P., Sorensen M., Keiding S., Vilstrup H., Ott P., Waagepetersen H. S. and Schousboe A. (2009) Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia. Metab. Brain Dis. 24, 135145.
  • Bakken I. J., White L. R., Unsgard G., Aasly J. and Sonnewald U. (1998) [U-13C]glutamate metabolism in astrocytes during hypoglycemia and hypoxia. J. Neurosci. Res. 51, 636645.
  • Bauernfeind A. L., Barks S. K., Duka T., Grossman L. I., Hof P. R. and Sherwood C. C. (2014) Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct. Funct. 219, 11491167.
  • Berl S. and Clarke D. D. (1983) The metabolic compartmentation concept, in Glutamine, Glutamate and GABA in The Central Nervous System, (Hertz L., Kvamme E., McGeer E. G. and Schousboe A., eds.), pp. 205217. Alan R. Liss Inc, New York.
  • Borges K. and Sonnewald U. (2012) Triheptanoin–a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment? Epilepsy Res. 100, 239244.
  • Brekke E. M. F., Walls A. B., Schousboe A., Waagepetersen H. S. and Sonnewald U. (2012) Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [lsqb]2-13C[rsqb]- and [lsqb]3-13C[rsqb]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons. J. Cereb. Blood Flow Metab. 32, 17881799.
  • Cerdan S., Kunnecke B. and Seelig J. (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J. Biol. Chem. 265, 1291612926.
  • Dadsetan S., Bak L. K., Sorensen M., Keiding S., Vilstrup H., Ott P., Leke R., Schousboe A. and Waagepetersen H. S. (2011) Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons. Neurochem. Int., 59, 482488.
  • Dejong C. H., Deutz N. E. and Soeters P. B. (1993) Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: influence of pair-feeding. J. Neurochem. 60, 10471057.
  • Dienel G. A. (2012a) Brain lactate metabolism: the discoveries and the controversies. J. Cereb. Blood Flow Metab. 32, 11071138.
  • Dienel G. A. (2012b) Fueling and imaging brain activation. ASN Neuro., 4, pii: e00093. doi:10.1042/AN20120021.
  • Eyjolfsson E. M., Nilsen L. H., Kondziella D., Brenner E., Haberg A. K. and Sonnewald U. (2011) Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia. J. Cereb. Blood Flow Metab. 31, 976985.
  • Gaitonde M. K. (1975) Conversion of [U-14C]threonine into 14C-labelled amino acids in the brain of thiamin-deficient rats. Biochem. J. 150, 285295.
  • Goyal M. S., Hawrylycz M., Miller J. A., Snyder A. Z. and Raichle M. E. (2014) Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab. 19, 4957.
  • Gruetter R., Novotny E. J., Boulware S. D., Mason G. F., Rothman D. L., Shulman G. I., Prichard J. W. and Shulman R. G. (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose. J. Neurochem. 63, 13771385.
  • Gruetter R., Seaquist E. R. and Ugrubil K. (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am. J. Physiol.-Endocrinol. Metab 281, E100E112.
  • Haberg A. and Sonnewald U. (2004) Contributions of astrocytes to ischemia-induced neuronal dysfuntion in vivo. Adv. Mol. Cell Biol., 31-III, 837856.
  • Haberg A., Qu H., Bakken I. J., Sande L. M., White L. R., Haraldseth O., Unsgard G., Aasly J. and Sonnewald U. (1998) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain. Dev. Neurosci. 20, 389398.
  • Haberg A., Qu H. and Sonnewald U. (2006) Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal survival. Neurochem. Int. 48, 531540.
  • Hadera M. G., Smeland O. B., McDonald T. S., Tan K. N., Sonnewald U. and Borges K. (2013) Triheptanoin in the pilocarpine model of temporal lobe epilepsy: evidence for a possible anaplerotic mechanism of action. J. Neuroche. 16, doi:10.1111/jnc.12610.
  • Hassel B. and Sonnewald U. (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J. Neurochem. 65, 22272234.
  • Hassel B. and Sonnewald U. (2002) Effects of potassium and glutamine on metabolism of glucose in astrocytes. Neurochem. Res. 27, 167171.
  • Hertz L. (2011) Astrocytic energy metabolism and glutamate formation — relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn. Reson. Imaging 29, 13191329.
  • Hertz L. and Hertz E. (2003) Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem. Int. 43, 355361.
  • Jitrapakdee S., St Maurice M., Rayment I., Cleland W. W., Wallace J. C. and Attwood P. V. (2008) Structure, mechanism and regulation of pyruvate carboxylase. Biochem. J. 413, 369387.
  • Kanamatsu T. and Tsukada Y. (1999) Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-13C]] glucose with or without ammonium acetate. Brain Res. 841, 1119.
  • Kaufman E. and Driscoll B. F. (1992) Carbon dioxide fixation in neuronal and astroglial cells in culture. J. Neurochem. 58, 258262.
  • Kornberg H. L. (1966) Anaplerotic sequences and their role in metabolism, in Essays in Biochemistry, Vol. 2 (Campbell P. N. and Greville G. D., eds), pp. 131. Academic Press, London.
  • Kurz G. M., Wiesinger H. and Hamprecht B. (1993) Purification of cytosolic malic enzyme from bovine brain, generation of monoclonal antibodies, and immunocytochemical localization of the enzyme in glial cells of neural primary cultures. J. Neurochem. 60, 14671474.
  • Lapidot A. and Gopher A. (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J. Biol. Chem. 269, 2719827208.
  • Leke R., Bak L. K., Anker M., et al. (2011) Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine. Neurotox. Res. 19, 496510.
  • Madsen P. L., Cruz N. F., Sokoloff L. and Dienel G. A. (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J. Cereb. Blood Flow Metab. 19, 393400.
  • Marin-Valencia I., Roe C. R. and Pascual J. M. (2010) Pyruvate carboxylase deficiency: mechanisms, mimics and anaplerosis. Mol. Genet. Metab. 101, 917.
  • Mason G. F., Petersen K. F., de Graaf R. A., Shulman G. I. and Rothman D. L. (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose. J. Neurochem. 100, 7386.
  • McKenna M. C. (2013) Glutamate pays Its own way in astrocytes. Fron. Endocrinol. 4, 191.
  • McKenna M. C., Tildon J. T., Stevenson J. H., Huang X. and Kingwell K. G. (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem. Res. 20, 14911501.
  • McKenna M. C., Sonnewald U., Huang X., Stevenson J. and Zielke H. R. (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66, 386393.
  • McKenna M. C., Stevenson J. H., Huang X., Tildon J. T., Zielke C. L. and Hopkins I. B. (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem. Int. 36, 451459.
  • McKenna M. C., Dienal G. A., Sonnewald U., Waagepetersen H. S. and Schousboe A. (2012) Energy metabolism of the brain. Basic Neurochemistry, pp. 224253. Elsevier Inc, London.
  • Melø T. M., Nehlig A. and Sonnewald U. (2006) Neuronal-glial interactions in rats fed a ketogenic diet. Neurochem. Int. 48, 498507.
  • Merle M., Martin M., Villegier A. and Canioni P. (1996) Mathematical modelling of the citric acid cycle for the analysis of glutamine isotopomers from cerebellar astrocytes incubated with [1(-13)C]glucose. Eur. J. Biochem. 239, 742751.
  • Mochel F., DeLonlay P., Touati G., Brunengraber H., Kinman R. P., Rabier D., Roe C. R. and Saudubray J. M. (2005) Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol. Genet. Metab. 84, 305312.
  • Morken T. S., Brekke E., Haberg A., Wideroe M., Brubakk A. M. and Sonnewald U. (2013) Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain. Neurochem. Res. 39, 556569.
  • Murin R., Mohammadi G., Leibfritz D. and Hamprecht B. (2009) Glial metabolism of valine. Neurochem. Res., 34, 11951203.
  • Nilsen L. H., Melø T. M., Saether O., Witter M. P. and Sonnewald U. (2012) Altered neurochemical profile in the McGill-R-Thy1-APP rat model of Alzheimer's disease: a longitudinal in vivo 1 H MRS study. J. Neurochem. 123, 532541.
  • Oja S. S. and Piha R. S. (1966) Changes in the concentration of free amino acids in the rat brain during postnatal development. Life Sci. 5, 865870.
  • Olstad E., Olsen G. M., Qu H. and Sonnewald U. (2007) Pyruvate recycling in cultured neurons from cerebellum. J. Neurosci. Res. 85, 33183325.
  • Oz G., Berkich D. A., Henry P. G., Xu Y., LaNoue K., Hutson S. M. and Gruetter R. (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J. Neurosci. 24, 1127311279.
  • Patel M. S. (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J. Neurochem. 22, 717724.
  • Qu H., Håberg A., Haraldseth O., Unsgård G. and Sonnewald U. (2000) 13C MR spectroscopy study of lactate as substrate for rat brain. Dev. Neurosci. 22, 429436.
  • Richards E. M., Fiskum G., Rosenthal R. E., Hopkins I. and McKenna M. C. (2007) Hyperoxic reperfusion after global ischemia decreases hippocampal energy metabolism. Stroke 38, 15781584.
  • Scafidi S., O'Brien J., Hopkins I., Robertson C., Fiskum G. and McKenna M. (2009) Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J. Neurochem. 109 (1 Suppl.), 189197.
  • Scafidi S., Fiskum G., Lindauer S. L., Bamford P., Shi D., Hopkins I. and McKenna M. C. (2010) Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain. J. Neurochem. 114, 820831.
  • Schiff M., Levrat V., Acquaviva C., Vianey-Saban C., Rolland M. O. and Guffon N. (2006) A case of pyruvate carboxylase deficiency with atypical clinical and neuroradiological presentation. Mol. Genet. Metab. 87, 175177.
  • Serres S., Raffard G., Franconi J. M. and Merle M. (2008) Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. J. Cereb. Blood Flow Metab. 28, 712724.
  • Shank R. P., Bennett G. S., Freytag S. O. and Campbell G. L. (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329, 364367.
  • Smeland O. B., Hadera M. G., McDonald T. S., Sonnewald U. and Borges K. (2013) Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice. J. Cereb. Blood Flow Metab. 33, 10901097.
  • Sonnewald U. and Rae C. (2010) Pyruvate carboxylation in different model systems studied by 13C MRS. Neurochem. Res. 35, 19161921.
  • Sonnewald U., Westergaard N., Petersen S. B., Unsgard G. and Schousboe A. (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J. Neurochem. 61, 11791182.
  • Sonnewald U., Westergaard N., Jones P., Taylor A., Bachelard H. S. and Schousboe A. (1996) Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J. Neurochem. 67, 25662572.
  • Tkáč I., Rao R., Georgieff M. K. and Gruetter R. (2003) Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn. Reson. Med. 50, 2432.
  • Waagepetersen H., Qu H., Hertz L., Sonnewald U. and Schousboe A. (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem. Res. 27, 14311437.
  • Waagepetersen H. S., Qu H., Sonnewald U., Shimamoto K. and Schousboe A. (2005) Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochem. Int. 47, 92102.
  • Waelsch H., Berl H. W., Rossi C. A., Clarke D. D. and Purpura D. P. (1964) Quantitative aspects of CO2 fixation in mammalian brain in vivo. J. Neurochem. 11, 717728.
  • Yu A. C., Drejer J., Hertz L. and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 14841487.