SEARCH

SEARCH BY CITATION

References

  • Aigner L., Arber S., Kapfhammer J. P., Laux T., Schneider C., Botteri F., Brenner H. R. and Caroni P. (1995) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83, 269278.
  • Amet L. E., Lauri S. E., Hienola A., Croll S. D., Lu Y., Levorse J. M., Prabhakaran B., Taira T., Rauvala H. and Vogt T. F. (2001) Enhanced hippocampal long-term potentiation in mice lacking heparin-binding growth-associated molecule. Mol. Cell. Neurosci. 17, 10141024.
  • Bechtholt A. J., Smith R., Raber J. and Cunningham C. L. (2004) Enhanced ethanol-, but not cocaine-induced, conditioned place preference in Apoe(-/-) mice. Pharmacol. Biochem. Behav. 77, 783792.
  • Caroni P. (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J. Neurosci. Methods 71, 39.
  • Cunningham C. L., Henderson C. M. and Bormann N. M. (1998) Extinction of ethanol-induced conditioned place preference and conditioned place aversion: effects of naloxone. Psychopharmacology 139, 6270.
  • Dackis C. and O'Brien C. (2005) Neurobiology of addiction: treatment and public policy ramifications. Nat. Neurosci. 8, 14311436.
  • Ducci F. and Goldman D. (2008) Genetic approaches to addiction: genes and alcohol. Addiction 103, 14141428.
  • Farris S. P. and Miles M. F. (2013) Fyn-dependent gene networks in acute ethanol sensitivity. PLoS ONE 8, e82435.
  • Ferrer-Alcón M., Uribarri M., Díaz A. et al. (2012) A new non-classical transgenic animal model of Depression Program No. 776.04/FF9 Neuroscience Meeting Planner. New Orleans, LA: Society for Neuroscience, 2012. Online.
  • Flatscher-Bader T. and Wilce P. A. (2008) Impact of Alcohol Abuse on Protein Expression of Midkine and Excitatory Amino Acid Transporter 1 in the Human Prefrontal Cortex. Alcohol. Clin. Exp. Res. 32, 18491858.
  • Flatscher-Bader T., van der Brug M., Hwang J. W., Gochee P. A., Matsumoto I., Niwa S. and Wilce P. A. (2005) Alcohol-responsive genes in the frontal cortex and nucleus accumbens of human alcoholics. J. Neurochem. 93, 359370.
  • Gass J. T. and Chandler L. J. (2013) The plasticity of extinction: contribution of the prefrontal cortex in treating addiction through inhibitory learning. Front. Psychiatry 4, 46.
  • Gramage E. and Herradon G. (2011) Connecting Parkinson's disease and drug addiction: common players reveal unexpected disease connections and novel therapeutic approaches. Curr. Pharm. Des. 17, 449461.
  • Gramage E., Alguacil L. F. and Herradon G. (2008) Pleiotrophin prevents cocaine-induced toxicity in vitro. Eur. J. Pharmacol. 595, 3538.
  • Gramage E., Rossi L., Granado N., Moratalla R. and Herradon G. (2010a) Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum. Neuroscience 170, 308316.
  • Gramage E., Putelli A., Polanco M. J., Gonzalez-Martin C., Ezquerra L., Alguacil L. F., Perez-Pinera P., Deuel T. F. and Herradon G. (2010b) The neurotrophic factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic effects: evidence from pleiotrophin knockout mice. Addict. Biol. 15, 403412.
  • Gramage E., Martin Y. B., Ramanah P., Perez-Garcia C. and Herradon G. (2011) Midkine regulates amphetamine-induced astrocytosis in striatum but has no effects on amphetamine-induced striatal dopaminergic denervation and addictive effects: functional differences between pleiotrophin and midkine. Neuroscience 190, 307317.
  • Gramage E., Del Olmo N., Fole A., Martin Y. B. and Herradon G. (2013a) Periadolescent amphetamine treatment causes transient cognitive disruptions and long-term changes in hippocampal LTP depending on the endogenous expression of pleiotrophin. Addict. Biol. 18, 1929.
  • Gramage E., Perez-Garcia C., Vicente-Rodriguez M., Bollen S., Rojo L. and Herradon G. (2013b) Regulation of extinction of cocaine-induced place preference by midkine is related to a differential phosphorylation of peroxiredoxin 6 in dorsal striatum. Behav. Brain Res. 253, 223231.
  • Gramage E., Herradon G., Martin Y. B., Vicente-Rodriguez M., Rojo L., Gnekow H., Barbero A. and Perez-Garcia C. (2013c) Differential phosphoproteome of the striatum from pleiotrophin knockout and midkine knockout mice treated with amphetamine: correlations with amphetamine-induced neurotoxicity. Toxicology 306, 147156.
  • Hartley J. L., Temple G. F. and Brasch M. A. (2000) DNA cloning using in vitro site-specific recombination. Genome Res. 10, 17881795.
  • den Hartog C. R., Beckley J. T., Smothers T. C., Lench D. H., Holseberg Z. L., Fedarovich H., Gilstrap M. J., Homanics G. E. and Woodward J. J. (2013) Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors. PLoS ONE 8, e80541.
  • Herradon G. and Ezquerra L. (2009) Blocking receptor protein tyrosine phosphatase beta/zeta: A potential therapeutic strategy for Parkinson's disease. Curr. Med. Chem. 16, 33223329.
  • Herradon G. and Perez-Garcia C. (2014) Targeting midkine and pleiotrophin signaling pathways in addiction and neurodegenerative disorders: Recent progress and perspectives. Br. J. Pharmacol. 171, 837848.
  • Herradon G., Ezquerra L., Nguyen T., Silos-Santiago I. and Deuel T. F. (2005) Midkine regulates pleiotrophin organ-specific gene expression: evidence for transcriptional regulation and functional redundancy within the pleiotrophin/midkine developmental gene family. Biochem. Biophys. Res. Commun. 333, 714721.
  • Herradon G., Ezquerra L., Gramage E. and Alguacil L. F. (2009) Targeting the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta signaling pathway to limit neurotoxicity induced by drug abuse. Mini Rev. Med. Chem. 9, 440447.
  • Houchi H., Babovic D., Pierrefiche O., Ledent C., Daoust M. and Naassila M. (2005) CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 30, 339349.
  • Lasek A. W., Lim J., Kliethermes C. L. et al. (2012) An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol. PLoS ONE 6, e22636.
  • Le Greves P. (2005) Pleiotrophin gene transcription in the rat nucleus accumbens is stimulated by an acute dose of amphetamine. Brain Res. Bull. 65, 529532.
  • Luscher C. and Malenka R. C. (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650663.
  • Marchand S., Betourne A., Marty V., Daumas S., Halley H., Lassalle J. M., Zajac J. M. and Frances B. (2006) A neuropeptide FF agonist blocks the acquisition of conditioned place preference to morphine in C57Bl/6J mice. Peptides 27, 964972.
  • Martin Y. B., Gramage E. and Herradon G. (2013) Maintenance of amphetamine-induced place preference does not correlate with astrocytosis. Eur. J. Pharmacol. 699, 258263.
  • Mayfield R. D., Harris R. A. and Schuckit M. A. (2008) Genetic factors influencing alcohol dependence. Br. J. Pharmacol. 154, 275287.
  • Meng K., Rodriguez-Pena A., Dimitrov T., Chen W., Yamin M., Noda M. and Deuel T. F. (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc. Natl Acad. Sci. USA 97, 26032608.
  • Miyakawa T., Yagi T., Kitazawa H., Yasuda M., Kawai N., Tsuboi K. and Niki H. (1997) Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Science 278, 698701.
  • Muramatsu T. (2014) Structure and function of midkine as the basis of its pharmacological effects. Br. J. Pharmacol. 171, 814826.
  • Palmer R. H., Button T. M., Rhee S. H., Corley R. P., Young S. E., Stallings M. C., Hopfer C. J. and Hewitt J. K. (2012) Genetic etiology of the common liability to drug dependence: evidence of common and specific mechanisms for DSM-IV dependence symptoms. Drug Alcohol Depend. 123(Suppl 1), S24S32.
  • Pariser H., Ezquerra L., Herradon G., Perez-Pinera P. and Deuel T. F. (2005) Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin. Biochem. Biophys. Res. Commun. 332, 664669.
  • Perez-Pinera P., Zhang W., Chang Y., Vega J. A. and Deuel T. F. (2007) Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J. Biol. Chem. 282, 2868328690.
  • Rietschel M. and Treutlein J. (2013) The genetics of alcohol dependence. Ann. N. Y. Acad. Sci. 1282, 3970.
  • Tajuddin N., Moon K. H., Marshall S. A., Nixon K., Neafsey E. J., Kim H. Y. and Collins M. A. (2014) Neuroinflammation and neurodegeneration in adult rat brain from binge ethanol exposure: abrogation by docosahexaenoic Acid. PLoS ONE 9, e101223.
  • Tzschentke T. M. (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict. Biol. 12, 227462.
  • Vicente-Rodriguez M., Perez-Garcia C., Gramage E. and Herradon G. (2012) Genetic inactivation of pleiotrophin but not midkine potentiates clonidine-induced alpha-2 adrenergic-mediated analgesia. Pharmacol. Biochem. Behav. 110, 185191.
  • Vicente-Rodriguez M., Gramage E., Herradon G. and Perez-Garcia C. (2013) Phosphoproteomic analysis of the striatum from pleiotrophin knockout and midkine knockout mice treated with cocaine reveals regulation of oxidative stress-related proteins potentially underlying cocaine-induced neurotoxicity and neurodegeneration. Toxicology 314, 166173.
  • Wang J., Carnicella S., Phamluong K., Jeanblanc J., Ronesi J. A., Chaudhri N., Janak P. H., Lovinger D. M. and Ron D. (2007) Ethanol induces long-term facilitation of NR2B-NMDA receptor activity in the dorsal striatum: implications for alcohol drinking behavior. J. Neurosci. 27, 35933602.
  • Yaka R., Tang K. C., Camarini R., Janak P. H. and Ron D. (2003) Fyn kinase and NR2B-containing NMDA receptors regulate acute ethanol sensitivity but not ethanol intake or conditioned reward. Alcohol. Clin. Exp. Res. 27, 17361742.