SEARCH

SEARCH BY CITATION

Keywords:

  • epineurium;
  • neuroanatomy;
  • porcine;
  • recurrent laryngeal nerve

Abstract

The recurrent laryngeal nerve (RLN) branches from the vagus cranial nerve to innervate structures important for voicing and swallowing. Damage to this nerve, commonly associated with surgery or idiopathic etiologies that largely occur with aging, results in impaired voicing and swallowing (Myssiorek, 2004). Sunderland proposed a model of peripheral nerve damage whereby a nerve's ability to resist damage from stretch and compression is determined by the quantity and composition of its epineurial connective tissues (Sunderland, 1951). Thus, it would be expected that epineurium differs depending upon the forces imposed on a nerve within its anatomical setting. The purpose of this study was to investigate RLN epineurium quantity and composition with development. A porcine model (piglet vs. juvenile) was used because of the similarity between porcine and human laryngeal innervation, anatomy and function. The entire RLN was excised bilaterally, and stereological methods were used to quantify the composition of epineurial connective tissues. Compared with the piglet, the juvenile pig RLN was double the diameter. While the piglet had no differences in the percentage of epineurial collagen and adipose between proximal and distal segments of both sides of the RLN, the juvenile pig had a greater percentage of collagen in the proximal segment of both sides of the RLN and a greater percentage of adipose in the distal segment of the left RLN compared with the proximal segment. In addition, unlike the piglet, the juvenile pig had a greater number of fascicles in the proximal than distal segment of the RLN, regardless of nerve side. These findings are consistent with predicted patterns associated with the different anatomical settings of the left and right RLN, show that the RLN changes with age, and support Sunderland's model.