• 1
    Havel RJ, Kane JP. Introduction: structure and metabolism of plasma lipoproteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW et al., eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 2001; 270516.
  • 2
    Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009; 297: E27188.
  • 3
    Olivecrona T, Hultin M, Bergo M, Olivecrona G. Lipoprotein lipase: regulation and role in lipoprotein metabolism. Proc Nutr Soc 1997; 56: 7239.
  • 4
    Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 2002; 43: 19972006.
  • 5
    Lookene A, Savonen R, Olivecrona G. Interaction of lipoproteins with heparan sulfate proteoglycans and with lipoprotein lipase. Studies by surface plasmon resonance technique. Biochemistry 1997; 36: 526775.
  • 6
    Cisar LA, Hoogewerf AJ, Cupp M, Rapport CA, Bensadoun A. Secretion and degradation of lipoprotein lipase in cultured adipocytes. Binding of lipoprotein lipase to membrane heparan sulfate proteoglycans is necessary for degradation. J Biol Chem 1989; 264: 176774.
  • 7
    Berryman DE, Bensadoun A. Heparan sulfate proteoglycans are primarily responsible for the maintenance of enzyme activity, binding, and degradation of lipoprotein lipase in Chinese hamster ovary cells. J Biol Chem 1995; 270: 2452531.
  • 8
    Korn ED. Clearing factor, a heparin-activated lipoprotein lipase. II. Substrate specificity and activation of coconut oil. J Biol Chem 1955; 215: 1526.
  • 9
    Davies BSJ, Beigneux AP, Barnes RH II et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab 2010; 12: 4252.
  • 10
    Olivecrona G, Ehrenborg E, Semb H et al. Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. J Lipid Res 2010; 51: 153545.
  • 11
    Franssen R, Young SG, Peelman F et al. Chylomicronemia with sow postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects. Circ Cardiovasc Genet 2010; 3: 16978.
  • 12
    Beigneux AP, Franssen R, Bensadoun A et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol 2009; 29: 95662.
  • 13
    Coca-Prieto I, Kroupa O, Gonzalez-Santos P et al. Childhood-onset chylomicronaemia with reduced plasma lipoprotein lipase activity and mass: identification of a novel GPIHBP1 mutation. J Intern Med 2011;270:2248.
  • 14
    Rios JJ, Shastry S, Jasso J et al. Deletion of GPIHBP1 causing severe chylomicronemia. J Inherit Metab Dis 2011; 35: 53140.
  • 15
    Charrière S, Peretti N, Bernard S et al. GPIHBP1 C89F neomutation and hydrophobic C-terminal domain G175R mutation in two pedigrees with severe hyperchylomicronemia. J Clin Endocrinol Metab 2011; 96: E16759.
  • 16
    Voss CV, Davies BS, Tat S et al. Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1. Proc Natl Acad Sci USA 2011; 108: 79804.
  • 17
    Ioka RX, Kang M-J, Kamiyama S et al. Expression cloning and characterization of a novel glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein, GPI-HBP1. J Biol Chem 2003; 278: 73449.
  • 18
    Beigneux AP, Davies B, Gin P et al. Glycosylphosphatidylinositol-anchored high density lipoprotein–binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 2007; 5: 27991.
  • 19
    Gin P, Beigneux AP, Voss C et al. Binding preferences for GPIHBP1, a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells. Arterioscler Thromb Vasc Biol 2011; 31: 17682.
  • 20
    Gin P, Yin L, Davies BS et al. The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons. J Biol Chem 2008; 284: 2955462.
  • 21
    Weinstein MM, Yin L, Tu Y et al. Chylomicronemia elicits atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2010; 30: 203.
  • 22
    Weinstein MM, Goulbourne CN, Davies BS et al. Reciprocal metabolic perturbations in the adipose tissue and liver of GPIHBP1-deficient mice. Arterioscler Thromb Vasc Biol 2011; 32: 2305.
  • 23
    Weinstein MM, Beigneux AP, Davies BS et al. Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice. J Biol Chem 2008; 283: 345118.
  • 24
    Weinstock PH, Bisgaier CL, Aalto-Setälä K et al. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired low density lipoprotein clearance in heterozygotes. J Clin Invest 1995; 96: 255568.
  • 25
    Strauss JG, Frank S, Kratky D et al. Adenovirus-mediated rescue of lipoprotein lipase-deficient mice. Lipolysis of triglyceride-rich lipoproteins is essential for high density lipoprotein maturation in mice. J Biol Chem 2001; 276: 3608390.
  • 26
    Zhang X, Qi R, Xian X et al. Spontaneous atherosclerosis in aged lipoproteinl lipase deficient mice with wevere hypertriglyceridemia on a normal chow diet. Circ Res 2008; 102: 2506.
  • 27
    Nordestgaard BG, Zilversmit DB. Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits. J Lipid Res 1988; 29: 1491500.
  • 28
    Zhang SH, Reddick RL, Burkey B, Maeda N. Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption. J Clin Invest 1994; 94: 93745.
  • 29
    Reddick RL, Zhang SH, Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb 1994; 14: 1417.
  • 30
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994; 14: 13340.
  • 31
    Plump AS, Smith JD, Hayek T et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E–deficient mice created by homologous recombination in ES cells. Cell 1992; 71: 34353.
  • 32
    Benlian P, De Gennes JL, Foubert L, Zhang H, Gagné SE, Hayden M. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 1996; 335: 84854.
  • 33
    Davies BS, Waki H, Beigneux AP et al. The expression of GPIHBP1, an endothelial cell binding site for lipoprotein lipase and chylomicrons, is induced by PPAR{gamma}. Mol Endocrinol 2008; 22: 2496504.
  • 34
    Olivecrona T, Bergo M, Hultin M, Olivecrona G. Nutritional regulation of lipoprotein lipase. Can J Cardiol 1995; 11(Suppl G): 73G8G.
  • 35
    Bergo M, Wu G, Ruge T, Olivecrona T. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on. J Biol Chem 2002; 277: 1192732.
  • 36
    Sukonina V, Lookene A, Olivecrona T, Olivecrona G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci USA 2006; 103: 174505.
  • 37
    Zhang Y, Repa JJ, Gauthier K, Mangelsdorf DJ. Regulation of lipoprotein lipase by the oxysterol receptors, LXRalpha and LXRbeta. J Biol Chem 2001; 276: 4301824.
  • 38
    Weinstein MM, Tu Y, Beigneux AP et al. Cholesterol intake modulates plasma triglyceride levels in glycosylphosphatidylinositol HDL-binding protein 1-deficient mice. Arterioscler Thromb Vasc Biol 2010; 30: 210613.
  • 39
    Ben-Zeev O, Doolittle MH, Singh N, Chang CH, Schotz MC. Synthesis and regulation of lipoprotein lipase in the hippocampus. J Lipid Res 1990; 31: 130713.
  • 40
    Bessesen DH, Richards CL, Etienne J, Goers JW, Eckel RH. Spinal cord of the rat contains more lipoprotein lipase than other brain regions. J Lipid Res 1993; 34: 22938.
  • 41
    Goldberg IJ, Soprano DR, Wyatt ML, Vanni TM, Kirchgessner TG, Schotz MC. Localization of lipoprotein lipase mRNA in selected rat tissues. J Lipid Res 1989; 30: 156977.
  • 42
    Vilaro S, Camps L, Reina M, Perez-Clausell J, Llobera M, Olivecrona T. Localization of lipoprotein lipase to discrete areas of the guinea pig brain. Brain Res 1990; 506: 24953.
  • 43
    Yacoub LK, Vanni TM, Goldberg IJ. Lipoprotein lipase mRNA in neonatal and adult mouse tissues: comparison of normal and combined lipase deficiency (cld) mice assessed by in situ hybridization. J Lipid Res 1990; 31: 184552.
  • 44
    Olafsen T, Young SG, Davies BS et al. Unexpected expression pattern for glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) in mouse tissues revealed by positron emission tomography scanning. J Biol Chem 2010; 285: 3923948.
  • 45
    Ma Y, Henderson HE, Liu MS et al. Mutagenesis in four candidate heparin binding regions (residues 279–282, 291–304, 390–393, and 439–448) and identification of residues affecting heparin binding of human lipoprotein lipase. J Lipid Res 1994; 35: 204959.
  • 46
    Sendak RA, Melford K, Kao A, Bensadoun A. Identification of the epitope of a monoclonal antibody that inhibits heparin binding of lipoprotein lipase: new evidence for a carboxyl-terminal heparin-binding domain. J Lipid Res 1998; 39: 63346.
  • 47
    Wong H, Davis RC, Thuren T et al. Lipoprotein lipase domain function. J Biol Chem 1994; 269: 1031923.
  • 48
    Ma Y, Henderson HE, Liu MS et al. Mutagenesis in four candidate heparin binding regions (residues 279–282, 291–304, 390–393, and 439–448) and identification of residues affecting heparin binding of human lipoprotein lipase. J Lipid Res 1994; 35: 204959.
  • 49
    Fry BG, Wuster W, Kini RM et al. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 2003; 57: 11029.
  • 50
    Beigneux AP, Gin P, Davies BSJ et al. Highly conserved cysteines within the Ly6 domain of GPIHBP1 are crucial for the binding of lipoprotein lipase. J Biol Chem 2009; 284: 302407.
  • 51
    Beigneux AP, Davies BS, Tat S et al. Assessing the role of the glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) three-finger domain in binding lipoprotein lipase. J Biol Chem 2011; 286: 1973543.
  • 52
    Beigneux AP, Gin P, Davies BS et al. Glycosylation of Asn-76 in mouse GPIHBP1 is critical for its appearance on the cell surface and the binding of chylomicrons and lipoprotein lipase. J Lipid Res 2008; 49: 131221.
  • 53
    Gin P, Goulbourne C, Adeyo O et al. Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1. Human Mol Genet 2012; 21: 296172.
  • 54
    Surendran RP, Visser ME, Heemelaar S et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J Intern Med 2012; 272: 18596.
  • 55
    Henderson H, Leisegang F, Hassan F, Hayden M, Marais D. A novel Glu421Lys substitution in the lipoprotein lipase gene in pregnancy-induced hypertriglyceridemic pancreatitis. Clin Chim Acta 1998; 269: 112.
  • 56
    Henderson HE, Hassan F, Marais D, Hayden MR. A new mutation destroying disulphide bridging in the C-terminal domain of lipoprotein lipase. Biochem Biophys Res Commun 1996; 227: 18994.
  • 57
    Yang CY, Gu ZW, Yang HX, Rohde MF, Gotto AM Jr, Pownall HJ. Structure of bovine milk lipoprotein lipase. J Biol Chem 1989; 264: 168227.
  • 58
    Wang J, Hegele RA. Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis 2007; 6: 23.
  • 59
    Klinger MM, Margolis RU, Margolis RK. Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipase-agarose. J Biol Chem 1985; 260: 408290.
  • 60
    Nielsen MS, Brejning J, Garcia R et al. Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans. J Biol Chem 1997; 272: 58217.
  • 61
    Karpe F, Olivecrona T, Olivecrona G et al. Lipoprotein lipase transport in plasma: role of muscle and adipose tissues in regulation of plasma lipoprotein lipase concentrations. J Lipid Res 1998; 39: 238793.
  • 62
    Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 1996; 37: 693707.
  • 63
    Cryer A. The role of the endothelium in myocardial lipoprotein dynamics. Mol Cell Biochem 1989; 88: 715.
  • 64
    Sonnenburg WK, Yu D, Lee EC et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J Lipid Res 2009; 50: 24219.
  • 65
    Liu J, Afroza H, Rader DJ, Jin W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J Biol Chem 2010; 285: 2756170.
  • 66
    Young SG, Davies BS, Voss CV et al. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res 2011; 52: 186984.