• 1
    WHO. Global tuberculosis report 2011. ( 2011. Accessed January 23, 2013.
  • 2
    Mack U, Migliori GB, Sester M et al. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. The European respiratory journal: official journal of the European Society for Clinical Respiratory Physiology 2009; 33: 95673.
  • 3
    Skrahina A, Hurevich H, Zalutskaya A et al. Alarming levels of drug-resistant tuberculosis in Belarus: results of a survey in Minsk. Eur Respir J 2012; 39: 142531.
  • 4
    Dorhoi A, Reece ST, Kaufmann SH. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev 2011; 240: 23551.
  • 5
    Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 2009; 27: 393422.
  • 6
    Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol 2012; 12: 58191.
  • 7
    Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annual review of pathology 2012; 7: 35384.
  • 8
    Russell DG, Barry CE 3rd, Flynn JL. Tuberculosis: what we don't know can, and does, hurt us. Science 2010; 328: 8526.
  • 9
    Lawn SD, Wood R, Wilkinson RJ. Changing concepts of “latent tuberculosis infection” in patients living with HIV infection. Clin Dev Immunol; 2011; doi: 10.1155/2011/980594
  • 10
    Achkar JM, Jenny-Avital ER. Incipient and subclinical tuberculosis: defining early disease states in the context of host immune response. J Infect Dis 2011; 204(Suppl 4): S117986.
  • 11
    Achkar JM, Sherpa T, Cohen HW, Holzman RS. Differences in clinical presentation among persons with pulmonary tuberculosis: a comparison of documented and undocumented foreign-born versus US-born persons. Clin Infect Dis 2008; 47: 127783.
  • 12
    Dheda K, Schwander SK, Zhu B, van Zyl-Smit RN, Zhang Y. The immunology of tuberculosis: from bench to bedside. Respirology 2010; 15: 43350.
  • 13
    Natarajan K, Kundu M, Sharma P, Basu J. Innate immune responses to M. tuberculosis infection. Tuberculosis (Edinb) 2011; 91: 42731.
  • 14
    Suthar AB, Lawn SD, Del Amo J et al. Antiretroviral therapy for prevention of tuberculosis in adults with HIV: a systematic review and meta-analysis. PLoS medicine 2012; 9: e1001270.
  • 15
    Keane J, Gershon S, Wise RP et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 2001; 345: 1098104.
  • 16
    Solovic I, Sester M, Gomez-Reino JJ et al. The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement. The European respiratory journal: official journal of the European Society for Clinical Respiratory Physiology 2010; 36: 1185206.
  • 17
    Wallis RS. Tumour necrosis factor antagonists: structure, function, and tuberculosis risks. Lancet Infect Dis 2008; 8: 60111.
  • 18
    Moller M, Hoal EG. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis (Edinb) 2010; 90: 7183.
  • 19
    Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 2002; 20: 581620.
  • 20
    Stein CM. Genetic epidemiology of tuberculosis susceptibility: impact of study design. PLoS Pathog 2011; 7: e1001189.
  • 21
    Luebeck Disaster. Am J Public Health Nations Health 1932; 22: 2967.
  • 22
    Rieder HL. Clarification of the Luebeck infant tuberculosis. Pneumologie 2003; 57: 4025.
  • 23
    Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis 2008; 8: 35968.
  • 24
    Wolf AJ, Desvignes L, Linas B et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 2008; 205: 10515.
  • 25
    Lin PL, Rodgers M, Smith L et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 2009; 77: 463142.
  • 26
    Dorman SE, Hatem CL, Tyagi S et al. Susceptibility to tuberculosis: clues from studies with inbred and outbred New Zealand white rabbits. Infect Immun 2004; 72: 17005.
  • 27
    Brighenti S, Lerm M. How Mycobacterium tuberculosis Manipulates Innate and Adaptive Immunity – New Views of an Old Topic. In: Cardona DP-J, ed. Understanding Tuberculosis - Analyzing the Origin of Mycobacterium Tuberculosis Pathogenicity. Rijeka, Croatia: InTech, 2012; 20734.
  • 28
    Welin A, Winberg ME, Abdalla H et al. Incorporation of Mycobacterium tuberculosis lipoarabinomannan into macrophage membrane rafts is a prerequisite for the phagosomal maturation block. Infect Immun 2008; 76: 28827.
  • 29
    Welin A, Raffetseder J, Eklund D, Stendahl O, Lerm M. Importance of Phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages. J Innate Immun 2011; 3: 50818.
  • 30
    Velmurugan K, Chen B, Miller JL et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 2007; 3: e110.
  • 31
    Carlsson F, Kim J, Dumitru C et al. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog 2010; 6: e1000895.
  • 32
    Welin A, Eklund D, Stendahl O, Lerm M. Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS ONE 2011; 6: e20302.
  • 33
    Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009; 136: 3749.
  • 34
    Kim JJ, Lee HM, Shin DM et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 2012; 11: 45768.
  • 35
    Cederlund A, Agerberth B, Bergman P. Specificity in killing pathogens is mediated by distinct repertoires of human neutrophil peptides. J Innate Immun 2010; 2: 50821.
  • 36
    Hernandez-Pando R, Jeyanathan M, Mengistu G et al. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 2000; 356: 21338.
  • 37
    Schon T, Elmberger G, Negesse Y, Pando RH, Sundqvist T, Britton S. Local production of nitric oxide in patients with tuberculosis. Int J Tuberc Lung Dis 2004; 8: 11347.
  • 38
    Stewart GR, Newton SM, Wilkinson KA et al. The stress-responsive chaperone alpha-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 2005; 55: 112737.
  • 39
    Nace G, Evankovich J, Eid R, Tsung A. Dendritic cells and damage-associated molecular patterns: endogenous danger signals linking innate and adaptive immunity. J Innate Immun 2012; 4: 615.
  • 40
    Comas I, Chakravartti J, Small PM et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 2010; 42: 498503.
  • 41
    Romagnoli A, Etna MP, Giacomini E, et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 2012; 8: 135770.
  • 42
    Persson YA, Blomgran-Julinder R, Rahman S, Zheng L, Stendahl O. Mycobacterium tuberculosis-induced apoptotic neutrophils trigger a pro-inflammatory response in macrophages through release of heat shock protein 72, acting in synergy with the bacteria. Microbes and infection/Institut Pasteur 2008; 10: 23340.
  • 43
    Zheng L, He M, Long M, Blomgran R, Stendahl O. Pathogen-induced apoptotic neutrophils express heat shock proteins and elicit activation of human macrophages. J Immunol 2004; 173: 631926.
  • 44
    Hedlund S, Persson A, Vujic A, Che KF, Stendahl O, Larsson M. Dendritic cell activation by sensing Mycobacterium tuberculosis-induced apoptotic neutrophils via DC-SIGN. Hum Immunol 2010; 71: 53540.
  • 45
    Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 2000; 164: 201620.
  • 46
    Briken V, Miller JL. Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future microbiology 2008; 3: 41522.
  • 47
    Blomgran R, Desvignes L, Briken V, Ernst JD. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 2012; 11: 8190.
  • 48
    Daniel TM. The history of tuberculosis. Respir Med 2006; 100: 186270.
  • 49
    Ramakrishnan CV, Rajendran K, Jacob PG, Fox W, Radhakrishna S. The role of diet in the treatment of pulmonary tuberculosis. An evaluation in a controlled chemotherapy study in home and sanatorium patients in South India. Bull World Health Organ 1961; 25: 33959.
  • 50
    Snowden FM. Emerging and reemerging diseases: a historical perspective. Immunol Rev 2008; 225: 926.
  • 51
    Cegielski JP, Arab L, Cornoni-Huntley J. Nutritional risk factors for tuberculosis among adults in the United States, 1971-1992. Am J Epidemiol 2012; 176: 40922.
  • 52
    Sinclair D, Abba K, Grobler L, Sudarsanam TD. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst Rev 2011; 11: CD006086.
  • 53
    Villamor E, Mugusi F, Urassa W et al. A trial of the effect of micronutrient supplementation on treatment outcome, T cell counts, morbidity, and mortality in adults with pulmonary tuberculosis. J Infect Dis 2008; 197: 1499505.
  • 54
    Visser ME, Grewal HM, Swart EC et al. The effect of vitamin A and zinc supplementation on treatment outcomes in pulmonary tuberculosis: a randomized controlled trial. Am J Clin Nutr 2011; 93: 93100.
  • 55
    Lawson L, Thacher TD, Yassin MA et al. Randomized controlled trial of zinc and vitamin A as co-adjuvants for the treatment of pulmonary tuberculosis. Trop Med Int Health 2010; 15: 148190.
  • 56
    Karyadi E, West CE, Schultink W et al. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status. Am J Clin Nutr 2002; 75: 7207.
  • 57
    Benn CS, Friis H, Wejse C. Should micronutrient supplementation be integrated into the case management of tuberculosis? J Infect Dis 2008; 197: 14879.
  • 58
    Coussens AK, Wilkinson RJ, Hanifa Y et al. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci USA 2012; 109: 1544954.
  • 59
    Ralph AP, Kelly PM, Anstey NM. L-arginine and vitamin D: novel adjunctive immunotherapies in tuberculosis. Trends Microbiol 2008; 16: 33644.
  • 60
    Schaible UE, Kaufmann SH. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med 2007; 4: e115.
  • 61
    Cegielski JP, McMurray DN. The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease 2004; 8: 28698.
  • 62
    Martineau AR, Timms PM, Bothamley GH et al. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 2011; 377: 24250.
  • 63
    Sudarsanam TD, John J, Kang G et al. Pilot randomized trial of nutritional supplementation in patients with tuberculosis and HIV-tuberculosis coinfection receiving directly observed short-course chemotherapy for tuberculosis. Trop Med Int Health 2011; 16: 699706.
  • 64
    McMurray DN, Bartow RA, Mintzer CL, Hernandez-Frontera E. Micronutrient status and immune function in tuberculosis. Ann N Y Acad Sci 1990; 587: 5969.
  • 65
    Gupta KB, Gupta R, Atreja A, Verma M, Vishvkarma S. Tuberculosis and nutrition. Lung India: official organ of Indian Chest Society 2009; 26: 916.
  • 66
    Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311: 17703.
  • 67
    Wejse C, Gomes VF, Rabna P et al. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 2009; 179: 84350.
  • 68
    Wejse C, Olesen R, Rabna P et al. Serum 25-hydroxyvitamin D in a West African population of tuberculosis patients and unmatched healthy controls. Am J Clin Nutr 2007; 86: 137683.
  • 69
    Martineau AR, Nhamoyebonde S, Oni T et al. Reciprocal seasonal variation in vitamin D status and tuberculosis notifications in Cape Town, South Africa. Proc Natl Acad Sci USA 2011; 108: 190137.
  • 70
    Nielsen NO, Skifte T, Andersson M et al. Both high and low serum vitamin D concentrations are associated with tuberculosis: a case-control study in Greenland. Br J Nutr 2010; 104: 148791.
  • 71
    Tostmann A, Wielders JP, Kibiki GS, Verhoef H, Boeree MJ, van der Ven AJ. Serum 25-hydroxy-vitamin D3 concentrations increase during tuberculosis treatment in Tanzania. Int J Tuberc Lung Dis 2010; 14: 114752.
  • 72
    Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001; 2: 90716.
  • 73
    Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 2008; 181: 37339.
  • 74
    Chan ED, Morris KR, Belisle JT et al. Induction of inducible nitric oxide synthase-NO* by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-kappaB signaling pathways. Infect Immun 2001; 69: 200110.
  • 75
    Qualls JE, Neale G, Smith AM et al. Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling. Sci Signal 2010; 3: ra62.
  • 76
    El Kasmi KC, Qualls JE, Pesce JT et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 2008; 9: 1399406.
  • 77
    Hesse M, Modolell M, La Flamme AC et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 2001; 167: 653344.
  • 78
    Pessanha AP, Martins RA, Mattos-Guaraldi AL, Vianna A, Moreira LO. Arginase-1 expression in granulomas of tuberculosis patients. FEMS Immunol Med Microbiol 2012; 66: 26568.
  • 79
    Davis AS, Vergne I, Master SS, Kyei GB, Chua J, Deretic V. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLoS Pathog 2007; 3: e186.
  • 80
    Chan ED, Chan J, Schluger NW. What is the role of nitric oxide in murine and human host defense against tuberculosis?Current knowledge. Am J Respir Cell Mol Biol 2001; 25: 60612.
  • 81
    Nicholson S, Bonecini-Almeida Mda G, Lapa e Silva JR,et al. . Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 1996; 183: 2293302.
  • 82
    Wang CH, Liu CY, Lin HC, Yu CT, Chung KF, Kuo HP. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J 1998; 11: 80915.
  • 83
    Schon T, Gebre N, Sundqvist T, Aderaye G, Britton S. Effects of HIV co-infection and chemotherapy on the urinary levels of nitric oxide metabolites in patients with pulmonary tuberculosis. Scand J Infect Dis 1999; 31: 1236.
  • 84
    Choi HS, Rai PR, Chu HW, Cool C, Chan ED. Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 2002; 166: 17886.
  • 85
    Nathan C. Microbiology. An antibiotic mimics immunity. Science 2008; 322: 13378.
  • 86
    Gurumurthy M, Mukherjee T, Dowd CS et al. Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles. The FEBS journal 2012; 279: 11325.
  • 87
    Singh R, Manjunatha U, Boshoff HI et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 2008; 322: 13925.
  • 88
    Manjunatha U, Boshoff HI, Barry CE. The mechanism of action of PA-824: novel insights from transcriptional profiling. Communicative & integrative biology 2009; 2: 2158.
  • 89
    Diacon AH, Dawson R, von Groote-Bidlingmaier F et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 2012; 380: 98693.
  • 90
    O'Brien L, Carmichael J, Lowrie DB, Andrew PW. Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect Immun 1994; 62: 518790.
  • 91
    Rhoades ER, Orme IM. Susceptibility of a panel of virulent strains of Mycobacterium tuberculosis to reactive nitrogen intermediates. Infect Immun 1997; 65: 118995.
  • 92
    Yu K, Mitchell C, Xing Y, Magliozzo RS, Bloom BR, Chan J. Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuber Lung Dis 1999; 79: 1918.
  • 93
    Inumaru VT, Nogueira PA, Butuem IV, Riley LW, Ferrazoli L. Reactive nitrogen intermediate susceptibility of Mycobacterium tuberculosis genotypes in an urban setting. Int J Tuberc Lung Dis 2009; 13: 6658.
  • 94
    Friedman CR, Quinn GC, Kreiswirth BN et al. Widespread dissemination of a drug-susceptible strain of Mycobacterium tuberculosis. J Infect Dis 1997; 176: 47884.
  • 95
    Timmins GS, Master S, Rusnak F, Deretic V. Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004; 48: 30069.
  • 96
    Idh J, Mekonnen M, Abate E et al. Resistance to first-line anti-TB drugs is associated with reduced nitric oxide susceptibility in Mycobacterium tuberculosis. PLoS ONE 2012; 7: e39891.
  • 97
    Wengenack NL, Jensen MP, Rusnak F, Stern MK. Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem Biophys Res Commun 1999; 256: 4857.
  • 98
    Ribeiro-Guimaraes ML, Pessolani MC. Comparative genomics of mycobacterial proteases. Microb Pathog 2007; 43: 1738.
  • 99
    Venugopal A, Bryk R, Shi S et al. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 2011; 9: 2131.
  • 100
    Bryk R, Griffin P, Nathan C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 2000; 407: 2115.
  • 101
    Milani M, Pesce A, Ouellet H, Guertin M, Bolognesi M. Truncated hemoglobins and nitric oxide action. IUBMB Life 2003; 55: 6237.
    Direct Link:
  • 102
    Biswas T, Small J, Vandal O et al. Structural insight into serine protease Rv3671c that Protects M. tuberculosis from oxidative and acidic stress. Structure 2010; 18: 135363.
  • 103
    Stewart GR, Ehrt S, Riley LW, Dale JW, McFadden J. Deletion of the putative antioxidant noxR1 does not alter the virulence of Mycobacterium tuberculosis H37Rv. Tuber Lung Dis 2000; 80: 23742.
  • 104
    Ruan J, St John G, Ehrt S, Riley L, Nathan C. noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella typhimurium from nitrosative and oxidative stress. Infect Immun 1999; 67: 327683.
  • 105
    Ehrt S, Shiloh MU, Ruan J et al. A novel antioxidant gene from Mycobacterium tuberculosis. J Exp Med 1997; 186: 188596.
  • 106
    Schon T, Elias D, Moges F et al. Arginine as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis. Eur Respir J 2003; 21: 4838.
  • 107
    Schon T, Idh J, Westman A et al. Effects of a food supplement rich in arginine in patients with smear positive pulmonary tuberculosis–a randomised trial. Tuberculosis (Edinb) 2011; 91: 3707.
  • 108
    Yeo TW, Lampah DA, Gitawati R et al. Safety profile of L-arginine infusion in moderately severe falciparum malaria. PLoS ONE 2008; 3: e2347.
  • 109
    Barry CE 3rd, Boshoff HI, Dartois V et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 2009; 7: 84555.
  • 110
    Lawn SD, Wood R. Tuberculosis in antiretroviral treatment services in resource-limited settings: addressing the challenges of screening and diagnosis. J Infect Dis 2011; 204(Suppl 4): S115967.
  • 111
    Lawn SD, Nicol MP. Xpert(R) MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol 2011; 6: 106782.
  • 112
    Lawn SD, Butera ST, Shinnick TM. Tuberculosis unleashed: the impact of human immunodeficiency virus infection on the host granulomatous response to Mycobacterium tuberculosis. Microbes Infect 2002; 4: 63546.
  • 113
    Diedrich CR, Flynn JL. HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun 2011; 79: 140717.
  • 114
    Torok ME, Farrar JJ. When to start antiretroviral therapy in HIV-associated tuberculosis. N Engl J Med 2011; 365: 153840.
  • 115
    Lawn SD, Torok ME, Wood R. Optimum time to start antiretroviral therapy during HIV-associated opportunistic infections. Curr Opin Infect Dis 2011; 24: 3442.
  • 116
    Albonico M, Crompton DW, Savioli L. Control strategies for human intestinal nematode infections. Adv Parasitol 1999; 42: 277341.
  • 117
    Elias D, Britton S, Kassu A, Akuffo H. Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance. Expert review of anti-infective therapy 2007; 5: 47584.
  • 118
    Elias D, Mengistu G, Akuffo H, Britton S. Are intestinal helminths risk factors for developing active tuberculosis? Trop Med Int Health 2006; 11: 5518.
  • 119
    Borkow G, Weisman Z, Leng Q et al. Helminths, human immunodeficiency virus and tuberculosis. Scand J Infect Dis 2001; 33: 56871.
  • 120
    Bentwich Z. Good worms or bad worms: do worm infections affect the epidemiological patterns of other diseases? Parasitol Today 2000; 16: 312.
  • 121
    Rafi W, Ribeiro-Rodrigues R, Ellner JJ, Salgame P. Coinfection-helminthes and tuberculosis. Curr Opin HIV AIDS 2012; 7: 23944.
  • 122
    Abate E, Belayneh M, Gelaw A et al. The impact of asymptomatic helminth co-infection in patients with newly diagnosed tuberculosis in north-west ethiopia. PLoS ONE 2012; 7: e42901.
  • 123
    Mouser EE, Pollakis G, Paxton WA. Effects of helminths and Mycobacterium tuberculosis infection on HIV-1: a cellular immunological perspective. Current opinion in HIV and AIDS 2012; 7: 2607.
  • 124
    Sangare LR, Herrin BR, John-Stewart G, Walson JL. Species-specific treatment effects of helminth/HIV-1 co-infection: a systematic review and meta-analysis. Parasitology 2011; 138: 154658.
  • 125
    Wolday D, Mayaan S, Mariam ZG et al. Treatment of intestinal worms is associated with decreased HIV plasma viral load. J Acquir Immune Defic Syndr 2002; 31: 5662.
  • 126
    Walson JL, Otieno PA, Mbuchi M et al. Albendazole treatment of HIV-1 and helminth co-infection: a randomized, double-blind, placebo-controlled trial. AIDS 2008; 22: 16019.
  • 127
    Walson JL, Herrin BR, John-Stewart G. Deworming helminth co-infected individuals for delaying HIV disease progression. Cochrane Database Syst Rev 2009; 3: CD006419.
  • 128
    Blish CA, Sangare L, Herrin BR, Richardson BA, John-Stewart G, Walson JL. Changes in plasma cytokines after treatment of ascaris lumbricoides infection in individuals with HIV-1 infection. J Infect Dis 2010; 201: 181621.
  • 129
    Sandler NG, Douek DC. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol 2012; 10: 65566.
  • 130
    Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J Exp Med 2011; 208: 186374.
  • 131
    Resende Co T, Hirsch CS, Toossi Z, Dietze R, Ribeiro-Rodrigues R. Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin Exp Immunol 2007; 147: 4552.
  • 132
    Diniz LM, Magalhaes EF, Pereira FE, Dietze R, Ribeiro-Rodrigues R. Presence of intestinal helminths decreases T helper type 1 responses in tuberculoid leprosy patients and may increase the risk for multi-bacillary leprosy. Clin Exp Immunol 2010; 161: 14250.
  • 133
    Babu S, Bhat SQ, Kumar NP et al. Attenuation of toll-like receptor expression and function in latent tuberculosis by coexistent filarial infection with restoration following antifilarial chemotherapy. PLoS Negl Trop Dis 2009; 3: e489.
  • 134
    Babu S, Kumaraswami V, Nutman TB. Alternatively activated and immunoregulatory monocytes in human filarial infections. J Infect Dis 2009; 199: 182737.
  • 135
    Elias D, Britton S, Aseffa A, Engers H, Akuffo H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 2008; 26: 3897902.
  • 136
    Smith SM, Dockrell HM. Role of CD8 T cells in mycobacterial infections. Immunol Cell Biol 2000; 78: 32533.
  • 137
    Woodworth JS, Behar SM. Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity. Crit Rev Immunol 2006; 26: 31752.
  • 138
    Mohagheghpour N, Gammon D, Kawamura LM, van Vollenhoven A, Benike CJ, Engleman EG. CTL response to Mycobacterium tuberculosis: identification of an immunogenic epitope in the 19-kDa lipoprotein. J Immunol 1998; 161: 24006.
  • 139
    Lalvani A, Brookes R, Wilkinson RJ et al. Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1998; 95: 2705.
  • 140
    Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet 1999; 33: 2955.
  • 141
    Stenger S, Hanson DA, Teitelbaum R et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998; 282: 1215.
  • 142
    Stenger S, Cytolytic T. Cells in the immune response to mycobacterium tuberculosis. Scand J Infect Dis 2001; 33: 4837.
  • 143
    Griffith TS, Lynch DH. TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 1998; 10: 55963.
  • 144
    Cho S, Mehra V, Thoma-Uszynski S et al. Antimicrobial activity of MHC class I-restricted CD8+ T cells in human tuberculosis. Proc Natl Acad Sci USA 2000; 97: 122105.
  • 145
    Tascon RE, Stavropoulos E, Lukacs KV, Colston MJ. Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon. Infect Immun 1998; 66: 8304.
  • 146
    Feng CG, Britton WJ. CD4+ and CD8+ T cells mediate adoptive immunity to aerosol infection of Mycobacterium bovis bacillus Calmette-Guerin. J Infect Dis 2000; 181: 18469.
  • 147
    Brighenti S, Andersson J. Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 2012; 205(Suppl 2): S31624.
  • 148
    Rahman S, Gudetta B, Fink J et al. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions. Am J Pathol 2009; 174: 221124.
  • 149
    Andersson J, Samarina A, Fink J, Rahman S, Grundstrom S. Impaired expression of perforin and granulysin in CD8+ T cells at the site of infection in human chronic pulmonary tuberculosis. Infect Immun 2007; 75: 521022.
  • 150
    Canaday DH, Wilkinson RJ, Li Q, Harding CV, Silver RF, Boom WH. CD4(+) and CD8(+) T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J Immunol 2001; 167: 273442.
  • 151
    Barnes PF. Immunotherapy for tuberculosis: wave of the future or tilting at windmills? Am J Respir Crit Care Med 2003; 168: 1423.
  • 152
    Johnson JL, Ssekasanvu E, Okwera A et al. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am J Respir Crit Care Med 2003; 168: 18591.
  • 153
    Wallis RS. Reconsidering adjuvant immunotherapy for tuberculosis. Clin Infect Dis 2005; 41: 2018.
  • 154
    Mwinga A, Nunn A, Ngwira B et al. Mycobacterium vaccae (SRL172) immunotherapy as an adjunct to standard antituberculosis treatment in HIV-infected adults with pulmonary tuberculosis: a randomised placebo-controlled trial. Lancet 2002; 360: 10505.
  • 155
    Ellner JJ. Immunoregulation in TB: observations and implications. Clin Transl Sci 2010; 3: 238.
  • 156
    Levy Y, Lacabaratz C, Weiss L et al. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Investig 2009; 119: 9971007.
  • 157
    Wallis RS, Kyambadde P, Johnson JL et al. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS 2004; 18: 25764.
  • 158
    Mayanja-Kizza H, Jones-Lopez E, Okwera A et al. Immunoadjuvant prednisolone therapy for HIV-associated tuberculosis: a phase 2 clinical trial in Uganda. J Infect Dis 2005; 191: 85665.