• 1
    Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest 2006; 116: 180212.
  • 2
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 10210.
  • 3
    Rahier J, Goebbels RM, Henquin JC. Cellular composition of the human diabetic pancreas. Diabetologia 1983; 24: 36671.
  • 4
    Coleman DL, Hummel KP. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 1973; 9: 28793.
  • 5
    Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndrome in mice. Diabetologia 1978; 14: 1418.
  • 6
    Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 1988; 37: 11637.
  • 7
    Surwit RS, Feinglos MN, Rodin J et al. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 1995; 44: 64551.
  • 8
    Andrikopoulos S, Massa CM, Aston-Mourney K et al. Differential effect of inbred mouse strain (C57BL/6, DBA/2, 129T2) on insulin secretory function in response to a high fat diet. J Endocrinol 2005; 187: 4553.
  • 9
    Kooptiwut S, Zraika S, Thorburn AW et al. Comparison of insulin secretory function in two mouse models with different susceptibility to beta-cell failure. Endocrinology 2002; 143: 208592.
  • 10
    Rossmeisl M, Rim JS, Koza RA, Kozak LP. Variation in type 2 diabetes–related traits in mouse strains susceptible to diet-induced obesity. Diabetes 2003; 52: 195866.
  • 11
    Parks BW, Nam E, Org E et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 2013; 17: 14152.
  • 12
    Sladek R, Rocheleau G, Rung J et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445: 8815.
  • 13
    Groop L, Lyssenko V. Genetic basis of beta-cell dysfunction in man. Diabetes Obes Metab 2009; 11(Suppl 4): 14958.
  • 14
    Bonnefond A, Froguel P, Vaxillaire M. The emerging genetics of type 2 diabetes. Trends Mol Med 2010; 16: 40716.
  • 15
    McCarthy MI, Zeggini E. Genome-wide association studies in type 2 diabetes. Curr Diabetes Rep 2009; 9: 16471.
  • 16
    Noguchi H. Production of pancreatic beta-cells from stem cells. Curr Diabetes Rev 2010; 6: 18490.
  • 17
    Rojas A, Khoo A, Tejedo JR, Bedoya FJ, Soria B, Martin F. Islet cell development. Adv Exp Med Biol 2010; 654: 5975.
  • 18
    Van Hoof D, D'Amour KA, German MS. Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res 2009; 3: 7387.
  • 19
    Kroon E, Martinson LA, Kadoya K et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26: 44352.
  • 20
    D'Amour KA, Bang AG, Eliazer S et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006; 24: 1392401.
  • 21
    D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005; 23: 153441.
  • 22
    Ravassard P, Hazhouz Y, Pechberty S et al. A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 2011; 121: 358997.
  • 23
    Donath MY, Ehses JA, Maedler K et al. Mechanisms of beta-cell death in type 2 diabetes. Diabetes 2005; 54(Suppl 2): S10813.
  • 24
    Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA. Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 2011; 60: 111121.
  • 25
    Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and {beta}-cell dysfunction. Endocr Rev 2008; 29: 35166.
  • 26
    Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995; 44: 24956.
  • 27
    Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004; 429: 416.
  • 28
    Cnop M, Hughes SJ, Igoillo-Esteve M et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 2010; 53: 32130.
  • 29
    Lee HC, Bonner-Weir S, Weir GC, Leahy JL. Compensatory adaption to partial pancreatectomy in the rat. Endocrinology 1989; 124: 15715.
  • 30
    Thorel F, Nepote V, Avril I et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464: 114954.
  • 31
    Rafaeloff R, Qin XF, Barlow SW, Rosenberg L, Vinik AI. Identification of differentially expressed genes induced in pancreatic islet neogenesis. FEBS Lett 1996; 378: 21923.
  • 32
    Rosenberg L, Duguid WP, Brown RA, Vinik AI. Induction of nesidioblastosis will reverse diabetes in Syrian golden hamster. Diabetes 1988; 37: 33441.
  • 33
    Xu X, D'Hoker J, Stange G et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132: 197207.
  • 34
    Collombat P, Xu X, Ravassard P et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009; 138: 44962.
  • 35
    Minami K, Seino S. Pancreatic acinar-to-beta cell transdifferentiation in vitro. Front Biosci 2008; 13: 582437.
  • 36
    Minami K, Okuno M, Miyawaki K et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 2005; 102: 1511621.
  • 37
    Baeyens L, Bouwens L. Can beta-cells be derived from exocrine pancreas? Diabetes Obes Metab 2008; 10(Suppl 4): 1708.
  • 38
    Kushner JA, Weir GC, Bonner-Weir S. Ductal origin hypothesis of pancreatic regeneration under attack. Cell Metab 2010; 11: 23.
  • 39
    Solar M, Cardalda C, Houbracken I et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009; 17: 84960.
  • 40
    Inada A, Nienaber C, Katsuta H et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA 2008; 105: 199159.
  • 41
    Sjoholm A. Intracellular signal transduction pathways that control pancreatic beta-cell proliferation. FEBS Lett 1992; 311: 8590.
  • 42
    Scharfmann R, Basmaciogullari A, Czernichow P. Effect of growth hormone and glucose on rat islet cells replication using 5-bromo-2-deoxyuridine incorporation. Diabetes Res 1990; 15: 13741.
  • 43
    Popiela H, Moore W. Tolbutamide stimulates proliferation of pancreatic beta cells in culture. Pancreas 1991; 6: 4649.
  • 44
    Porat S, Weinberg-Corem N, Tornovsky-Babaey S et al. Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab 2011; 13: 4409.
  • 45
    Kubota N, Tobe K, Terauchi Y et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000; 49: 18809.
  • 46
    Withers DJ, Sanchez Gutierrez J, Towery H et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391: 9004.
  • 47
    Kulkarni RN, Holzenberger M, Shih DQ et al. beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nat Genet 2002; 31: 1115.
  • 48
    El Ouaamari A, Kawamori D, Dirice E et al. Liver-derived systemic factors drive beta cell hyperplasia in insulin-resistant states. Cell Rep 2013; 3: 40110.
  • 49
    Imai J, Katagiri H, Yamada T et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 2008; 322: 12504.
  • 50
    Ehses JA, Perren A, Eppler E et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 2007; 56: 235670.
  • 51
    Maedler K, Sergeev P, Ris F et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002; 110: 85160.
  • 52
    Maedler K, Spinas GA, Lehmann R et al. Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 2001; 50: 168390.
  • 53
    Maedler K, Schumann DM, Sauter N et al. Low concentration of interleukin-1beta induces FLICE-inhibitory protein-mediated beta-cell proliferation in human pancreatic islets. Diabetes 2006; 55: 271322.
  • 54
    Maedler K, Fontana A, Ris F et al. FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. Proc Natl Acad Sci USA 2002; 99: 823641.
  • 55
    Weinhaus AJ, Stout LE, Sorensen RL. Glucokinase, hexokinase, glucose transporter 2, and glucose metabolism in islets during pregnancy and prolactin-treated islets in vitro: mechanisms for long term up-regulation of islets. Endocrinology 1996; 137: 16409.
  • 56
    Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1997; 29: 3017.
  • 57
    Rieck S, Kaestner KH. Expansion of beta-cell mass in response to pregnancy. Trends Endocrinol Metab 2010; 21: 1518.
  • 58
    Butler AE, Cao-Minh L, Galasso R et al. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia 2010; 53: 216776.
  • 59
    Moldrup A, Petersen ED, Nielsen JH. Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells. Endocrinology 1993; 133: 116572.
  • 60
    Zhang H, Zhang J, Pope CF et al. Gestational diabetes mellitus resulting from impaired beta-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen. Diabetes 2010; 59: 14352.
  • 61
    Hughes E, Huang C. Participation of Akt, menin, and p21 in pregnancy-induced beta-cell proliferation. Endocrinology 2011; 152: 84755.
  • 62
    Karnik SK, Chen H, McLean GW et al. Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus. Science 2007; 318: 8069.
  • 63
    Zhang H, Li W, Wang Q et al. Glucose-mediated repression of menin promotes pancreatic beta-cell proliferation. Endocrinology 2012; 153: 60211.
  • 64
    Kim H, Toyofuku Y, Lynn FC et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 2010; 16: 8048.
  • 65
    Schraenen A, Lemaire K, de Faudeur G et al. Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy. Diabetologia 2010; 53: 258999.
  • 66
    Jacovetti C, Abderrahmani A, Parnaud G et al. MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J Clin Invest 2012; 122: 354151.
  • 67
    Kwak SH, Jang HC, Park KS. Finding genetic risk factors of gestational diabetes. Genomics Inform 2012; 10: 23943.
  • 68
    Baptiste-Roberts K, Barone BB, Gary TL et al. Risk factors for type 2 diabetes among women with gestational diabetes: a systematic review. Am J Med 2009; 122: 20714.e4.
  • 69
    Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide I. Proc Natl Acad Sci USA 1992; 89: 86415.
  • 70
    Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993; 133: 286170.
  • 71
    Ozaki N, Shibasaki T, Kashima Y et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2000; 2: 80511.
  • 72
    Holst JJ, ∆rskov C, Vagn Nielsen O, Schwartz TW. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 1987; 211: 16974.
  • 73
    Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide 1(7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 1987; 79: 6169.
  • 74
    Preitner F, Ibberson M, Franklin I et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004; 113: 63545.
  • 75
    Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 (7-36)amide but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91: 3017.
  • 76
    Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 2009; 5: 2629.
  • 77
    Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000; 141: 46005.
  • 78
    Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999; 42: 85664.
  • 79
    Buteau J, Foisy S, Joly E, Prentki M. Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 2003; 52: 12432.
  • 80
    Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 2004; 47: 80615.
  • 81
    Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003; 278: 4718.
  • 82
    Hinke SA, Hellemans K, Schuit FC. Plasticity of the beta cell insulin secretory competence: preparing the pancreatic beta cell for the next meal. J Physiol 2004; 558: 36980.
  • 83
    Cornu M, Modi H, Kawamori D, Kulkarni RN, Joffraud M, Thorens B. Glucagon-like peptide-1 increases beta-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem 2010; 285: 1053845.
  • 84
    Liu MJ, Shin S, Li N et al. Prolonged remission of diabetes by regeneration of beta cells in diabetic mice treated with recombinant adenoviral vector expressing glucagon-like peptide-1. Mol Ther 2007; 15: 8693.
  • 85
    Zhang J, Tokui Y, Yamagata K et al. Continuous stimulation of human glucagon-like peptide-1 (7-36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes. Diabetologia 2007; 50: 19009.
  • 86
    Jhala US, Canettieri G, Screaton RA et al. cAMP promotes pancreatic beta-cells survival via CREB-mediated induction of IRS2. Genes Dev 2003; 17: 157580.
  • 87
    Park S, Dong X, Fisher TL et al. Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function. J Biol Chem 2006; 281: 115968.
  • 88
    Buteau J, Spatz ML, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass. Diabetes 2006; 55: 11906.
  • 89
    Cornu M, Yang JY, Jaccard E, Poussin C, Widmann C, Thorens B. Glp-1 Protects Beta-Cells Against Apoptosis By Increasing The Activtiy Of An Igf-2/Igf1-Receptor Autocrine Loop. Diabetes 2009; 58: 181625.
  • 90
    Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008; 283: 872335.
  • 91
    da Silva Xavier G, Loder MK, McDonald A et al. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 2009; 58: 894905.
  • 92
    da Silva Xavier G, Mondragon A, Sun G et al. Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7 l2-null mice. Diabetologia 2012; 55: 266776.
  • 93
    Shu L, Matveyenko AV, Kerr-Conte J, Cho JH, McIntosh CH, Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet 2009; 18: 238899.
  • 94
    Rutti S, Sauter NS, Bouzakri K, Prazak R, Halban PA, Donath MY. In vitro proliferation of adult human beta-cells. PLoS One 2012; 7: e35801.
  • 95
    Parnaud G, Bosco D, Berney T et al. Proliferation of sorted human and rat beta cells. Diabetologia 2008; 51: 91100.
  • 96
    Bunck MC, Diamant M, Corner A et al. One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 2009; 32: 7628.
  • 97
    Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 2013; PMID: 23524641. [Epub ahead of print].
  • 98
    Klinger S, Poussin C, Debril MB, Dolci W, Halban PA, Thorens B. Increasing GLP-1-induced beta-cell proliferation by silencing the negative regulators of signaling cAMP response element modulator-alpha and DUSP14. Diabetes 2008; 57: 58493.
  • 99
    Rutter J, Michnoff CH, Harper SM, Gardner KH, McKnight SL. PAS kinase: an evolutionarily conserved PAS domain-regulated serine/threonine kinase. Proc Natl Acad Sci USA 2001; 98: 89916.
  • 100
    da Silva Xavier G, Rutter J, Rutter GA. Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc Natl Acad Sci USA 2004; 101: 831924.
  • 101
    An R, da Silva Xavier G, Hao HX, Semplici F, Rutter J, Rutter GA. Regulation by Per-Arnt-Sim (PAS) kinase of pancreatic duodenal homeobox-1 nuclear import in pancreatic beta-cells. Biochem Soc Trans 2006; 34: 7913.
  • 102
    da Silva Xavier G, Farhan H, Kim H et al. Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia 2011; 54: 81927.
  • 103
    Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2013; 23: 5362.
  • 104
    Rachdi L, Aiello V, Duvillie B, Scharfmann R. L-leucine alters pancreatic beta-cell differentiation and function via the mTor signaling pathway. Diabetes 2012; 61: 40917.
  • 105
    Xie J, Herbert TP. The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic beta-cell mass: implications in the development of type-2 diabetes. Cell Mol Life Sci 2012; 69: 1289304.
  • 106
    Velazquez-Garcia S, Valle S, Rosa TC et al. Activation of protein kinase C-zeta in pancreatic beta-cells in vivo improves glucose tolerance and induces beta-cell expansion via mTOR activation. Diabetes 2011; 60: 254659.
  • 107
    Bartolome A, Guillen C, Benito M. Role of the TSC1-TSC2 complex in the integration of insulin and glucose signaling involved in pancreatic beta-cell proliferation. Endocrinology 2010; 151: 308494.
  • 108
    Mori H, Inoki K, Opland D et al. Critical roles for the TSC-mTOR pathway in beta-cell function. Am J Physiol Endocrinol Metab 2009; 297: E101322.
  • 109
    Yang SB, Lee HY, Young DM et al. Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity. J Mol Med (Berl) 2012; 90: 57585.
  • 110
    Zahr E, Molano RD, Pileggi A et al. Rapamycin impairs beta-cell proliferation in vivo. Transplant Proc 2008; 40: 4367.
  • 111
    Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 2012; 11: 44361.
  • 112
    Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012; 13: 22538.
  • 113
    Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 2011; 286: 604960.
  • 114
    Bordone L, Motta MC, Picard F et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006; 4: e31.
  • 115
    Moynihan KA, Grimm AA, Plueger MM et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2: 10517.
  • 116
    Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008; 283: 2762835.
  • 117
    Sun G, Tarasov AI, McGinty JA et al. LKB1 deletion with the RIP2.Cre transgene modifies pancreatic beta-cell morphology and enhances insulin secretion in vivo. Am J Physiol Endocrinol Metab 2010; 298: E126173.
  • 118
    Granot Z, Swisa A, Magenheim J et al. LKB1 regulates pancreatic beta cell size, polarity, and function. Cell Metab 2009; 10: 296308.
  • 119
    Fu A, Ng AC, Depatie C et al. Loss of Lkb1 in adult beta cells increases beta cell mass and enhances glucose tolerance in mice. Cell Metab 2009; 10: 28595.
  • 120
    Biason-Lauber A, Boni-Schnetzler M, Hubbard BP et al. Identification of a SIRT1 Mutation in a Family with Type 1 Diabetes. Cell Metab 2013; 17: 44855.
  • 121
    Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 2006; 21: 4860.
  • 122
    Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1: 1525.
  • 123
    Fu A, Eberhard CE, Screaton RA. Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol 2013; 366: 12734.
  • 124
    Andralojc K, Srinivas M, Brom M et al. Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia 2012; 55: 124757.
  • 125
    Arifin DR, Bulte JW. Imaging of pancreatic islet cells. Diabetes Metab Res Rev 2011; 27: 7616.
  • 126
    Veluthakal R, Harris P. In vivo beta-cell imaging with VMAT 2 ligands–current state-of-the-art and future perspective. Curr Pharm Des 2010; 16: 156881.