Long-term Aβ exposure augments mCa2+-independent mROS-mediated depletion of cardiolipin for the shift of a lethal transient mitochondrial permeability transition to its permanent mode in NARP cybrids: a protective targeting of melatonin


  • The first and second authors contributed equally.

Address reprint requests to Mei-Jie Jou, Department of Physiology and Pharmacology School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333 Taiwan.

E-mail: mjjou@mail.cgu.edu.tw


Mitochondrial dysfunction is a hallmark of amyloid β-peptide (Aβ)-induced neurodegeneration of Alzheimer's disease (AD). This study investigated whether mtDNA T8993G mutation-induced complex V inhibition, clinically associated with neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP), is a potential risk factor for AD and the pathological link for long-term exposure of Aβ-induced mitochondrial toxicity and apoptosis in NARP cybrids. Using noninvasive fluorescence probe–coupled laser scanning imaging microscopy and NARP cybrids harboring 98% mutant genes along with its parental 143B osteosarcoma cells, we demonstrated that Aβ-augmented mitochondrial Ca2+ (mCa2+)-independent mitochondrial reactive oxygen species (mROS) formation for a cardiolipin (CL, a major mitochondrial protective phospholipid)-dependent lethal modulation of the mitochondrial permeability transition (MPT). Aβ augmented not only the amount but also the propagation rate of mROS-induced mROS formation to significantly depolarize mitochondrial membrane potential (∆Ψm) and reduce mCa2+ stress. Aβ-augmented mROS oxidized and depleted CL, thereby enhances mitochondrial fission and movement retardation, which promoted the NARP-augmented lethal transient-MPT (t-MPT) to switch to its irreversible mode of permanent-MPT (p-MPT). Interestingly, melatonin, a multiple mitochondrial protector, markedly reduced Aβ-augmented mROS formation and therefore significantly reduced mROS-mediated depolarization of ∆Ψm, fission of mitochondria and retardation of mitochondrial movement to stabilize CL and hence the MPT. In the presence of melatonin, Aβ-promoted p-MPT was reversed to a protective t-MPT, which preserved ∆Ψm and lowered elevated mCa2+ to sublethal levels for an enhanced mCa2+-dependent O2 consumption. Thus, melatonin may potentially rescue AD patients associated with NARP symptoms.