SEARCH

SEARCH BY CITATION

  • Abele, D. & Puntarulo, S. 2004. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Phys. A. 138:40515.
  • Amsler, C. D., Amsler, M. O., McClintock, J. B. & Baker, B. J. 2009. Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia 48:32434.
  • Arasimowicz, M., Floryszak-Wieczorek, J., Milczarek, G. & Jelonek, T. 2009. Nitric oxide, induced by wounding, mediates redox regulation in pelargonium leaves. Plant Biol. 11:65063.
  • Asada, K., Kiso, K. & Yoshikawa, K. 1974. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J. Biol. Chem. 249:217581.
  • Aumack, C. F., Amsler, C. D., McClintock, J. B. & Baker, B. J. 2010. Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur. J. Phycol. 45:1926.
  • Babior, B. M. 1999. NADPH oxidase: an update. Blood 93:146476.
  • Benjamini, Y. & Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 289300.
  • Bouarab, K., Potin, P., Weinberger, F., Correa, J. & Kloareg, B. 1999. Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:163550.
  • Bradley, D. J., Kjellbom, P. & Lamb, C. J. 1992. Elicitor-induced and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:2130.
  • Brisson, L. F., Tenhaken, R. & Lamb, C. 1994. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:170312.
  • Bucolo, P., Amsler, C. D., McClintock, J. B. & Baker, B. J. 2011. Palatability of the Antarctic rhodophyte Palmaria decipiens (Reinsch) RW Ricker and its endo/epiphyte Elachista antarctica Skottsberg to sympatric amphipods. J. Exp. Mar. Biol. Ecol. 396:2026.
  • Clark, C. D., De Bruyn, W. J., Hirsch, C. M. & Jakubowski, S. D. 2010. Hydrogen peroxide measurements in recreational marine bathing waters in Southern California, USA. Water Res. 44:220310.
  • Cohen, J. 1988. Statistical Power Analysis for the Behavioural Sciences. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 567 pp.
  • Collén, J. & Davison, I. R. 1999. Reactive oxygen production and damage in intertidal Fucus spp. (Phaeophyceae). J. Phycol. 35:5461.
  • Collén, J. & Pedersén, M. 1994. A stress-induced oxidative burst in Eucheuma platycladum (Rhodophyta) Physiol. Plant 92:41722.
  • Crosse, J. E., Goodman, R. N. & Shaffer, W. H. 1972. Leaf damage as a predisposing factor in the infection of apple shoots by Erwinia amylovora. Phytopathology 62:17682.
  • Gerringa, L. J. A., Rijkenberg, M. J. A., Timmermans, R. & Buma, A. G. J. 2004. The influence of solar ultraviolet radiation on the photochemical production of H2O2 in the equatorial Atlantic Ocean. J. Sea Res. 51:310.
  • Grubbs, F. E. 1969. Procedures for detecting outlying observations in samples. Technometrics 11:121.
  • Haber, F. & Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London Ser. A. 147:33251.
  • Halliwell, B. & Gutteridge, J. M. C. 2007. Free Radicals in Biology and Medicine. Oxford University Press Inc., New York, 851 pp.
  • Halliwell, B. & Whiteman, M. 2004. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol. 142:23155.
  • Hanson, A. K., Tindale, N. W. & Abdel-Moati, M. A. R. 2001. An Equatorial Pacific rain event: influence on the distribution of iron and hydrogen peroxide in surface waters. Mar. Chem. 75:6988.
  • Hoffmann, M. E., Mello-Filho, A. C. & Meneghini, R. 1984. Correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochim. Biophys. Acta 781:2348.
  • Huang, Y. M., Amsler, M. O., McClintock, J. B., Amsler, C. D. & Baker, B. J. 2007. Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol. 30:141730.
  • Huang, X., Stettmaier, K., Michel, C., Hutzler, P., Mueller, M. J. & Durner, J. 2004. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:93846.
  • Jesus, W. C., Jr., Belasque Júnior, J., Amorim, L., Christiano, R. S. C., Parra, J. R. P. & Bergamin Filho, A. 2006. Injuries caused by citrus leafminer (Phyllocnistis citrella) exacerbate citrus canker (Xanthomonas axonopodis pv. citri) infection. Fitopatol. Bras. 31:27783.
  • Johnson, K. S., Willason, S. W., Wiesenburg, D. A., Lohrenz, S. E. & Arnone, R. A. 1989. Hydrogen peroxide in the western Mediterranean Sea: a tracer for vertical advection. Deep Sea Res. 36:24154.
  • Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman, R. E., Roger, A. J. & Gray, M. W. 2005. The tree of eukaryotes. Trends Ecol. Evol. 20:6706.
  • Kirkman, H. N. & Gaetani, G. F. 2007. Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem. Sci. 32:4450.
  • Klotz, M. G. & Loewen, P. C. 2003. The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into Eukaryota. Mol. Biol. Evol. 20:1098112.
  • Küpper, F. C., Gaquerel, E., Boneberg, E. M., Morath, S., Salaün, J. P. & Potin, P. 2006. Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades. J. Exp. Bot. 57:19919.
  • Küpper, F. C., Kloareg, B., Guern, J. & Potin, P. 2001. Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol. 125:27891.
  • Küpper, F. C., Müller, D. G., Peters, A. F., Kloareg, B. & Potin, P. 2002. Oligoalginate recognition and oxidative burst play a key role in natural and induced resistance of sporophytes of Laminariales. J. Chem. Ecol. 28:205781.
  • Laturnus, F., Wiencke, C. & Klöser, H. 1996. Antarctic macroalgae: sources of volatile halogenated organic compounds. Mar. Environ. Res. 41:16981.
  • Lawrence, A., Jones, C. M., Wardman, P. & Burkitt, M. J. 2003. Evidence for the role of a peroxidase compound I-type intermediate in the oxidation of glutathione, NADH, ascorbate, and dichlorofluorescin by cytochrome c/H2O2. Implications for oxidative stress during apoptosis. J. Biol. Chem. 278:294109.
  • LeBel, C. P., Ischiropoulos, H. & Bondy, S. C. 1992. Evaluation of the probe 2′,7′-Dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5:22731.
  • Levine, A., Tenhaken, R., Dixon, R. & Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:58393.
  • Mehler, A. H. 1951. Studies on reactivities of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33:6577.
  • Moore, C. A., Farmer, C. T. & Zika, R. G. 1993. Influence of the Orinoco River on hydrogen peroxide distribution and production in the eastern Caribbean. J. Geophys. Res. 98:228999.
  • Morker, K. H. & Roberts, M. R. 2011. Light as both an input and an output of wound-induced reactive oxygen formation in Arabidopsis leaves. Plant Signal. Behav. 6:10879.
  • Myhre, O., Andersen, J. M., Aarnes, H. & Fonnum, F. 2003. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem. Pharmacol. 65:157582.
  • Ohashi, T., Mizutani, A., Murakami, A., Kojo, S., Ishii, T. & Taketani, S. 2002. Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 511:217.
  • Peng, M. & Kuc, J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:6969.
  • Pörtner, H. O. & Playle, R. 1998. Cold Ocean Physiology. Cambridge University Press, Cambridge, UK, 489 pp.
  • Potin, P. 2008. Oxidative burst and related responses in biotic interactions of algae. In Amsler, C. D. [Ed.] Algal Chemical Ecology. Springer-Verlag, Berlin, Germany, pp. 24571.
  • Potin, P., Bouarab, K., Küpper, F. & Kloareg, B. 1999. Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr. Opin. Microbiol. 2:27683.
  • Potin, P., Bouarab, K., Salaün, J. P., Pohnert, G. & Kloareg, B. 2002. Biotic interactions of marine algae. Curr. Opin. Plant Biol. 5:30817.
  • Radi, R. 2004. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA 101:40038.
  • Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. 1991. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:4817.
  • Rasband, W. S. 1997-2013. ImageJ. U.S. National Institute of Health, Bethesda, Maryland. Available at: imagej.nih.gov/ij/
  • Resing, J., Tien, G., Letelier, R. & Karl, D. M. 1993. Palmer LTER: hydrogen peroxide in the Palmer LTER region: II. Water column distribution. Antarct. J. US XXVIII:2278.
  • Rojkind, M., Domínguez-Rosales, J. A., Nieto, N. & Greenwel, P. 2002. Role of hydrogen peroxide and oxidative stress in healing responses. Cell. Mol. Life Sci. 59:187291.
  • Ross, C., Küpper, F. C. & Jacobs, R. S. 2006. Involvement of reactive oxygen species and reactive nitrogen species in the wound response of Dasycladus vermicularis. Chem. Biol. 13:35364.
  • Ross, C., Küpper, F. C., Vreeland, V., Waite, J. H. & Jacobs, R. S. 2005. Evidence of a latent oxidative burst in relation to wound repair in the giant unicellular chlorophyte Dasycladus vermicularis. J. Phycol. 41:53141.
  • Scully, N., McQueen, D., Lean, D. & Cooper, W. 1996. Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75° N gradient. Limnol. Oceanogr. 41:5408.
  • Sen, C. K. & Roy, S. 2008. Redox signals in wound healing. Biochim. Biophys. Acta. Gen. Subj. 1780:134861.
  • Soares, N. C., Wojtkowska, J. & Jackson, P. A. 2011. A proteomic analysis of the wound response in Medicago leaves reveals the early activation of a ROS-sensitive signal pathway. J. Proteomics 74:141120.
  • Torres, M. A., Jones, J. D. G. & Dangl, J. L. 2005. Pathogen-induced, NADPH oxidase–derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37:11304.
  • Turrens, J. F. 2003. Mitochondrial formation of reactive oxygen species. J. Phys. London 552:33544.
  • Vandenabeele, S., Van Der Kelen, K., Dat, J., Gadjev, I., Boonefaes, T., Morsa, S., Rottiers, P. et al. 2003. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc. Natl Acad. Sci. USA 100:161138.
  • Vetrano, A. M., Heck, D. E., Mariano, T. M., Mishin, V., Laskin, D. L. & Laskin, J. D. 2005. Characterization of the oxidase activity in mammalian catalase. J. Biol. Chem. 280:3537281.
  • Vilcheze, C. & Jacobs, W. R. 2007. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu. Rev. Microbiol. 61:3550.
  • Wang, Z. G., Ke, B. B. & Xu, Z. K. 2007. Covalent immobilization of redox enzyme on electrospun nonwoven poly (acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotechnol. Bioeng. 97:70820.
  • Weinberger, F. 2007. Pathogen-induced defense and innate immunity in macroalgae. Biol. Bull. 213:290302.
  • Weinberger, F., Coquempot, B., Forner, S., Morin, P., Kloareg, B. & Potin, P. 2007. Different regulation of haloperoxidation during agar oligosaccharide-activated defence mechanisms in two related red algae, Gracilaria sp. and Gracilaria chilensis. J. Exp. Bot. 58:436572.
  • Weinberger, F., Friedlander, M. & Hoppe, H. G. 1999. Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta). J. Phycol. 35:74755.
  • Weinberger, F., Guillemin, M.-L., Destombe, C., Valero, M., Faugeron, S., Correa, J. A., Pohnert, G., Pehlke, C., Kloareg, B. & Potin, P. 2010. Defense evolution in the Gracilariaceae (Rhodophyta): substrate-regulated oxidation of agar oligosaccharides is more ancient than the oligoagar-activated oxidative burst. J. Phycol. 46:95868.
  • Weinberger, F., Pohnert, G., Kloareg, B. & Potin, P. 2002. A signal released by an endophytic attacker acts as a substrate for a rapid defensive reaction of the red alga Chondrus crispus. ChemBioChem 12:12603.
  • Wever, R. 2012. Structure and function of vanadium haloperoxidases. In Michibata, H. [Ed.] Vanadium: Biochemical and Molecular Biological Approaches. Springer, New York, pp. 95125.
  • Wever, R. & van der Horst, M. A. 2013. The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment. Dalton Trans. 42:1177886.
  • Zika, R. G., Moffett, J. W., Petasne, R. G., Cooper, W. J. & Saltzman, E. S. 1985. Spatial and temporal variations of hydrogen peroxide in Gulf of Mexico waters. Geochim. Cosmochim. Acta 49:117384.