SEARCH

SEARCH BY CITATION

References

  • 1
    Henschen A, Lottspeich F, Kehl M, Southan C. Covalent structure of fibrinogen. Ann N Y Acad Sci 1983; 408: 2843.
  • 2
    Ritchie DG, Fuller GM. Hepatocyte-stimulating factor: a monocyte-derived acute-phase regulatory protein. Ann N Y Acad Sci 1983; 408: 490502.
  • 3
    Lane A, Graham L, Cook M, Chantry D, Green F, Nigon F, Humphries SE. Cytokine production by cholesterol-loaded human peripheral monocyte-macrophages: the effect on fibrinogen mRNA levels in a hepatoma cell-line (HepG2). Biochim Biophys Acta 1991; 1097: 1615.
  • 4
    Dalmon J, Laurent M, Courtois G. The human beta fibrinogen promoter contains a hepatocyte nuclear factor 1-dependent interleukin-6-responsive element. Mol Cell Biol 1993; 13: 118393.
  • 5
    Green F, Humphries S. Control of plasma fibrinogen levels. Baillieres Clin Haematol 1989; 2: 94559.
  • 6
    Verschuur M, de Jong M, Felida L, de Maat MP, Vos HL. A hepatocyte nuclear factor-3 site in the fibrinogen beta promoter is important for interleukin 6-induced expression, and its activity is influenced by the adjacent -148C/T polymorphism. J Biol Chem 2005; 280: 1676371.
  • 7
    Hill M, Dolan G. Diagnosis, clinical features and molecular assessment of the dysfibrinogenaemias. Haemophilia 2008; 14: 88997.
  • 8
    de Moerloose P, Boehlen F, Neerman-Arbez M. Fibrinogen and the risk of thrombosis. Semin Thromb Hemost 2010; 36: 717.
  • 9
    Bornikova L, Peyvandi F, Allen G, Bernstein J, Manco-Johnson MJ. Fibrinogen replacement therapy for congenital fibrinogen deficiency. J Thromb Haemost 2011; 9: 1687704.
  • 10
    Suh TT, Holmbäck K, Jensen NJ, Daugherty CC, Small K, Simon DI, Potter S, Degen JL. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev 1995; 9: 202033.
  • 11
    Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106: 38592.
  • 12
    Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA 2000; 97: 1415661.
  • 13
    Tsurupa G, Hantgan RR, Burton RA, Pechik I, Tjandra N, Medved L. Structure, stability, and interaction of the fibrin(ogen) alphaC-domains. Biochemistry 2009; 48: 12191201.
  • 14
    La Corte AL, Philippou H, Ariëns RA. Role of fibrin structure in thrombosis and vascular disease. Adv Protein Chem Struct Biol 2011; 83: 75127.
  • 15
    Hategan A, Gersh KC, Safer D, Weisel JW. Visualization of the dynamics of fibrin clot growth one molecule at a time by total internal reflection fluorescence microscopy. Blood 2013; 121: 14558.
  • 16
    Ariëns RA, Lai TS, Weisel JW, Greenberg CS, Grant PJ. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 2002; 100: 74354.
  • 17
    Philippou H, Rance J, Myles T, Hall SW, Ariëns RA, Grant PJ, Leung L, Lane DA. Roles of low specificity and cofactor interaction sites on thrombin during factor XIII activation. Competition for cofactor sites on thrombin determines its fate. J Biol Chem 2003; 278: 320206.
  • 18
    Smith KA, Adamson PJ, Pease RJ, Brown JM, Balmforth AJ, Cordell PA, Ariëns RA, Philippou H, Grant PJ. Interactions between factor XIII and the alphaC region of fibrinogen. Blood 2011; 117: 34608.
  • 19
    Smith KA, Pease RJ, Avery CA, Brown JM, Adamson PJ, Cooke EJ, Neergaard-Petersen S, Cordell PA, Ariëns RA, Fishwick CW, Philippou H, Grant PJ. The activation peptide cleft exposed by thrombin cleavage of FXIII-A2 contains a recognition site for the fibrinogen α chain. Blood. 2013; 121: 211726.
  • 20
    Fraser SR, Booth NA, Mutch NJ. The antifibrinolytic function of factor XIII is exclusively expressed through α₂-antiplasmin cross-linking. Blood 2011; 117: 63714.
  • 21
    Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB, Wilson AC, Folsom AR, Wu K, Benderly M, Goldbourt U, Willeit J, Kiechl S, Yarnell JW, Sweetnam PM, Elwood PC, Cushman M, Psaty BM, Tracy RP, Tybjaerg-Hansen A, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 2005; 294: 1799809.
  • 22
    Kannel WB, Wolf PA, Castelli WP, D'Agostino RB. Fibrinogen and risk of cardiovascular disease: the Framingham Study. JAMA 1987; 258: 11836.
  • 23
    Lowe GD, Rumley A. Fibrinogen and its degradation products as thrombotic risk factors. Ann N Y Acad Sci 2001; 936: 5605.
  • 24
    van Hylckama Vlieg A, Rosendaal FR. High levels of fibrinogen are associated with the risk of deep venous thrombosis mainly in the elderly. J Thromb Haemost 2003; 1: 26778.
  • 25
    Hennerici MG, Kay R, Bogousslavsky J, Lenzi GL, Verstraete M. Orgogozo JM; ESTAT investigators. Intravenous ancrod for acute ischaemic stroke in the European Stroke Treatment with Ancrod Trial: a randomised controlled trial. Lancet 2006; 368: 18718.
  • 26
    van der Bom JG, de Maat MP, Bots ML, Haverkate F, de Jong PT, Hofman A, Kluft C, Grobbee DE. Elevated plasma fibrinogen: cause or consequence of cardiovascular disease? Arterioscler Thromb Vasc Biol 1998; 18: 6215.
  • 27
    Lane DA, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 2000; 95: 151732.
  • 28
    Machlus KR, Cardenas JC, Church FC, Wolberg AS. Causal relationship between hyperfibrinogenemia, thrombosis and resistance to thrombolysis in mice. Blood 2011; 117: 495363.
  • 29
    Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med 2011; 364: 174660.
  • 30
    Bini A, Fenoglio JJ Jr, Mesa-Tejada R, Kudryk B, Kaplan KL. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis: use of monoclonal antibodies. Arteriosclerosis 1989; 9: 10921.
  • 31
    Lepedda AJ, Cigliano A, Cherchi GM, Spirito R, Maggioni M, Carta F, Turrini F, Edelstein C, Scanu AM, Formato M. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis 2009; 203: 1128.
  • 32
    Bartlett JW, De Stavola BL, Meade TW. Assessing the contribution of fibrinogen in predicting risk of death in men with peripheral arterial disease. J Thromb Haemost 2009; 7: 2706.
  • 33
    Parry DJ, Al-Barjas HS, Chappell L, Rashid T, Ariëns RA, Scott DJ. Haemostatic and fibrinolytic factors in men with a small abdominal aortic aneurysm. Br J Surg 2009; 96: 8707.
  • 34
    Chen J, Mohler ER 3rd, Xie D, Shlipak MG, Townsend RR, Appel LJ, Raj DS, Ojo AO, Schreiber MJ, Strauss LF, Zhang X, Wang X, He J, Hamm LL; CRIC Investigators. Risk factors for peripheral arterial disease among patients with chronic kidney disease. Am J Cardiol 2012; 110: 13641.
  • 35
    Weisel JW. The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 2004; 112: 26776.
  • 36
    Collet JP, Park D, Lesty C, Soria J, Soria C, Montalescot G, Weisel JW. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 2000; 20: 135461.
  • 37
    Weisel JW, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 1992; 63: 11128.
  • 38
    Wolberg AS, Monroe DM, Roberts HR, Hoffman M. Elevated prothrombin results in clots with an altered fiber structure: a possible mechanism of the increased thrombotic risk. Blood 2003; 101: 300813.
  • 39
    Ariëns RA, Philippou H, Nagaswami C, Weisel JW, Lane DA, Grant PJ. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000; 96: 98895.
  • 40
    Lim BC, Ariëns RA, Carter AM, Weisel JW, Grant PJ. Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet 2003; 361: 142431.
  • 41
    Standeven KF, Grant PJ, Carter AM, Scheiner T, Weisel JW, Ariëns RA. Functional analysis of the fibrinogen Aalpha Thr312Ala polymorphism: effects on fibrin structure and function. Circulation 2003; 107: 232630.
  • 42
    Ajjan R, Lim BC, Standeven KF, Harrand R, Dolling S, Phoenix F, Greaves R, Abou-Saleh RH, Connell S, Smith DA, Weisel JW, Grant PJ, Ariëns RA. Common variation in the C-terminal region of the fibrinogen beta-chain: effects on fibrin structure, fibrinolysis and clot rigidity. Blood 2008; 111: 64350.
  • 43
    Cooper AV, Standeven KF, Ariëns RA. Fibrinogen γ-chain splice variant γ' alters fibrin formation and structure. Blood 2003; 102: 53540.
  • 44
    Collet JP, Nagaswami C, Farrell DH, Montalescot G, Weisel JW. Influence of gamma' fibrinogen splice variant on fibrin physical properties and fibrinolysis rate. Arterioscler Thromb Vasc Biol 2004; 24: 3826.
  • 45
    Siebenlist KR, Mosesson MW, Hernandez I, Bush LA, Di Cera E, Shainoff JR, Di Orio JP, Stojanovic L. Studies on the basis for the properties of fibrin produced from fibrinogen-containing gamma' chains. Blood 2005; 106: 27306.
  • 46
    Gersh KC, Nagaswami C, Weisel JW, Lord ST. The presence of gamma' chain impairs fibrin polymerization. Thromb Res 2009; 124: 35663.
  • 47
    Allan P, Uitte de Willige S, Abou-Saleh RH, Connell SD, Ariëns RA. Evidence that fibrinogen γ' directly interferes with protofibril growth: implications for fibrin structure and clot stiffness. J Thromb Haemost 2012; 10: 107280.
  • 48
    Williams S, Fatah K, Hjemdahl P, Blombäck M. Better increase in fibrin gel porosity by low dose than intermediate dose acetylsalicylic acid. Eur Heart J 1998; 19: 166672.
  • 49
    Ajjan RA, Standeven KF, Khanbhai M, Phoenix F, Gersh KC, Weisel JW, Kearney MT, Ariëns RA, Grant PJ. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system. Arterioscler Thromb Vasc Biol 2009; 29: 7127.
  • 50
    Svensson J, Bergman AC, Adamson U, Blombäck M, Wallén H, Jörneskog G. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: a mass spectrometric and isotope labeling study. Biochem Biophys Res Commun 2012; 421: 33542.
  • 51
    Jörneskog G, Egberg N, Fagrell B, Fatah K, Hessel B, Johnsson H, Brismar K, Blombäck M. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia 1996; 39: 151923.
  • 52
    Dunn EJ, Ariëns RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia 2005; 48: 1198206.
  • 53
    Dunn EJ, Philippou H, Ariëns RA, Grant PJ. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia 2006; 49: 107180.
  • 54
    Smith SA, Morrissey JH. Polyphosphate enhances fibrin clot structure. Blood 2008; 112: 28106.
  • 55
    Mutch NJ, Engel R, Uitte de Willige S, Philippou H, Ariëns RA. Polyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Blood 2010; 115: 39808.
  • 56
    Konings J, Govers-Riemslag JW, Philippou H, Mutch NJ, Borissoff JI, Allan P, Mohan S, Tans G, ten Cate H, Ariëns RA. Factor XIIa regulates the structure of the fibrin clot independently of thrombin generation through direct interaction with fibrin. Blood 2011; 118: 394251.
  • 57
    Hess K, Alzahrani SH, Mathai M, Schroeder V, Carter AM, Howell G, Koko T, Strachan MW, Price JF, Smith KA, Grant PJ, Ajjan RA. A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia 2012; 55: 110313.
  • 58
    Richardson VR, Schroeder V, Grant PJ, Standeven KF, Carter AM. Complement C3 is a substrate for activated factor XIII that is cross-linked to fibrin during clot formation. Br J Haematol 2013; 160: 1169.
  • 59
    Undas A, Ariëns RA. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 2011; 31: e8899.
  • 60
    Fatah K, Hamsten A, Blombäck B, Blombäck M. Fibrin gel network characteristics and coronary heart disease: relations to plasma fibrinogen concentration, acute phase protein, serum lipoproteins, and coronary atherosclerosis. Thromb Haemost 1992; 68: 1305.
  • 61
    Fatah K, Silveira A, Tornvall P, Karpe F, Blombäck M, Hamsten A. Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb Haemost 1996; 76: 53540.
  • 62
    Collet JP, Allali Y, Lesty C, Tanguy ML, Silvain J, Ankri A, Blanchet B, Dumaine R, Gianetti J, Payot L, Weisel JW, Montalescot G. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol 2006; 26: 256773.
  • 63
    Undas A, Plicner D, Stepien E, Drwila R, Sadowski J. Altered fibrin clot structure in patients with advanced coronary artery disease: a role of C-reactive protein, lipoprotein(a), and homocysteine. J Thromb Haemost 2007; 5: 198890.
  • 64
    Undas A, Szuldrzynski K, Stepien E, Zalewski J, Godlewski J, Tracz W, Pasowicz M, Zmudka K. Reduced clot permeability and susceptibility to lysis in patients with acute coronary syndrome: effects of inflammation and oxidative stress. Atherosclerosis 2007; 196: 5518.
  • 65
    Mills JD, Ariëns RA, Mansfield MW, Grant PJ. Altered fibrin clot structure in the healthy relatives of patients with premature coronary artery disease. Circulation 2002; 106: 193842.
  • 66
    Cubbon RM, Wheatcroft SB, Grant PJ, Gale CP, Barth JH, Sapsford RJ, Ajjan R, Kearney MT, Hall AS. Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur Heart J 2007; 28: 5405.
  • 67
    Undas A, Zawilska K, Ciesla-Dul M, Lehmann-Kopydłowska A, Skubiszak A, Ciepłuch K, Tracz W. Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives. Blood 2009; 114: 42728.
  • 68
    Undas A, Podolec P, Zawilska K, Pieculewicz M, Jedliński I, Stepień E, Konarska-Kuszewska E, Weglarz P, Duszyńska M, Hanschke E, Przewlocki T, Tracz W. Altered fibrin clot structure/function as a novel risk factor for cryptogenic ischemic stroke. Stroke 2009; 40: 1499501.
  • 69
    Undas A, Slowik A, Wolkow P, Szczudlik A, Tracz W. Fibrin clot properties in acute ischemic stroke: relation to neurological deficit. Thromb Res 2010; 125: 35761.
  • 70
    Rooth E, Wallen NH, Blombäck M, He S. Decreased fibrin clot network permeability and impaired fibrinolysis in the acute and convalescent phase of ischemic stroke. Thromb Res 2011; 127: 516.
  • 71
    Bhasin N, Ariëns RA, West RM, Parry DJ, Grant PJ, Scott DJ. Altered fibrin clot architecture and function in the healthy first-degree relatives of subjects with intermittent claudication. J Vasc Surg 2008; 48: 1497503.
  • 72
    Bhasin N, Parry DJ, Scott DJ, Ariëns RA, Grant PJ, West RM. Regarding “Altered fibrin clot structure and function in individuals with intermittent claudication”. J Vasc Surg 2009; 49: 10889.
  • 73
    Undas A, Nowakowski T, Cieśla-Dul M, Sadowski J. Altered plasma fibrin clot characteristics are associated with worse clinical outcome in patients with peripheral arterial disease and thromboangiitis obliterans. Atherosclerosis 2011; 215: 4816.
  • 74
    Undas A, Kaczmarek P, Sladek K, Stepien E, Skucha W, Rzeszutko M, Gorkiewicz-Kot I, Tracz W. Fibrin clot properties are altered in patients with chronic obstructive pulmonary disease: beneficial effects of simvastatin treatment. Thromb Haemost 2009; 102: 117682.
  • 75
    Sjøland JA, Sidelmann JJ, Brabrand M, Pedersen RS, Pedersen JH, Esbensen K, Standeven KF, Ariëns RA, Gram J. Fibrin clot structure in patients with end-stage renal disease. Thromb Haemost 2007; 98: 33945.
  • 76
    Kwasny-Krochin B, Gluszko P, Undas A. Unfavorably altered fibrin clot properties in patients with active rheumatoid arthritis. Thromb Res 2010; 126: e116.
  • 77
    Undas A, Celinska-Lowenhoff M, Lowenhoff T, Szczeklik A. Statins, fenofibrate, and quinapril increase clot permeability and enhance fibrinolysis in patients with coronary artery disease. J Thromb Haemost 2006; 4: 102936.
  • 78
    Tehrani S, Mobarrez F, Antovic A, Santesson P, Lins PE, Adamson U, Henriksson P, Wallen NH, Jörneskog G. Atorvastatin has antithrombotic effects in patients with type 1 diabetes and dyslipidemia. Thromb Res 2010; 126: e22531.
  • 79
    Pieters M, Covic N, van der Westhuizen FH, Nagaswami C, Baras Y, Toit Loots D, Jerling JC, Elgar D, Edmondson KS, van Zyl DG, Rheeder P, Weisel JW. Glycaemic control improves fibrin network characteristics in type 2 diabetes – a purified fibrinogen model. Thromb Haemost 2008; 99: 691700.
  • 80
    Stuijver DJ, Hooper JM, Orme SM, van Zaane B, Squizzato A, Piantanida E, Hess K, Alzahrani S, Ajjan RA. Fibrin clot structure and fibrinolysis in hypothyroid individuals: the effects of normalising thyroid hormone levels. J Thromb Haemost 2012; 10: 170810.
  • 81
    Humphries SE, Cook M, Dubowitz M, Stirling Y, Meade TW. Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet 1987; 1: 14525.
  • 82
    Behague I, Poirier O, Nicaud V, Evans A, Arveiler D, Luc G, Cambou JP, Scarabin PY, Bara L, Green F, Cambien F. Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. The ECTIM Study. Etude Cas-Temoins sur l'Infarctus du Myocarde. Circulation 1996; 93: 4409.
  • 83
    Thomas AE, Green FR, Humphries SE. Association of genetic variation at the beta-fibrinogen gene locus and plasma fibrinogen levels; interaction between allele frequency of the G/A-455 polymorphism, age and smoking. Clin Genet 1996; 50: 18490.
  • 84
    de Maat MP, Kastelein JJ, Jukema JW, Zwinderman AH, Jansen H, Groenemeier B, Bruschke AV, Kluft C. 455G/A polymorphism of the beta-fibrinogen gene is associated with the progression of coronary artherosclerosis in symptomatic men: proposed role for an acute-phase reaction pattern of fibrinogen. REGRESS group. Arterioscler Thromb Vasc Biol 1998; 18: 26571.
  • 85
    Baumann RE, Henschen AH. Human fibrinogen polymorphic site analysis by restriction endonuclease digestion and allele-specific polymerase chain reaction amplification: identification of polymorphisms at positions A alpha 312 and B beta 448. Blood 1993; 82: 211724.
  • 86
    Carter AM, Catto AJ, Kohler HP, Ariëns RA, Stickland MH, Grant PJ. alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood 2000; 96: 11779.
  • 87
    Rasmussen-Torvik LJ, Cushman M, Tsai MY, Zhang Y, Heckbert SR, Rosamond WD, Folsom AR. The association of alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism in the LITE study. Thromb Res 2007; 121: 17.
  • 88
    Suntharalingam J, Goldsmith K, van Marion V, Long L, Treacy CM, Dudbridge F, Toshner MR, Pepke-Zaba J, Eikenboom JC, Morrell NW. Fibrinogen Aalpha Thr312Ala polymorphism is associated with chronic thromboembolic pulmonary hypertension. Eur Respir J 2008; 31: 73641.
  • 89
    Uitte de Willige S, de Visser MC, Houwing-Duistermaat JJ, Rosendaal FR, Vos HL, Bertina RM. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma' levels. Blood. 2005; 106: 417683.
  • 90
    Uitte de Willige S, Rietveld IM, De Visser MC, Vos HL, Bertina RM. Polymorphism 10034C>T is located in a region regulating polyadenylation of FGG transcripts and influences the fibrinogen gamma'/gammaA mRNA ratio. J Thromb Haemost. 2007; 5: 12439.
  • 91
    Carter AM, Catto AJ, Bamford JM, Grant PJ. Gender-specific associations of the fibrinogen B beta 448 polymorphism, fibrinogen levels, and acute cerebrovascular disease. Arterioscler Thromb Vasc Biol 1997; 17: 58994.
  • 92
    Chung DW, Davie EW. Gamma and γ' chains of human fibrinogen are produced by alternative mRNA processing. Biochemistry 1984; 23: 42326.
  • 93
    Francis CW, Marder VJ, Martin SE. Demonstration of a large molecular weight variant of the gamma chain of normal human plasma fibrinogen. J Biol Chem 1980; 255: 5599604.
  • 94
    Fornace AJ Jr, Cummings DE, Comeau CM, Kant JA, Crabtree GR. Structure of the human gamma-fibrinogen gene: alternate mRNA splicing near the 3′ end of the gene produces gamma A and gamma B forms of gamma-fibrinogen. J Biol Chem 1984; 259: 1282630.
  • 95
    Wolfenstein-Todel C, Mosesson MW. Human plasma fibrinogen heterogeneity: evidence for an extended carboxyl-terminal sequence in a normal gamma chain variant (γ'). Proc Natl Acad Sci USA 1980; 77: 506973.
  • 96
    Uitte de Willige S, Standeven KF, Philippou H, Ariëns RA. The pleiotropic role of the fibrinogen gamma' chain in hemostasis. Blood. 2009; 114: 39944001.
  • 97
    Lovely RS, Moaddel M, Farrell DH. Fibrinogen γ' chain binds thrombin exosite II. J Thromb Haemost 2003; 1: 12431.
  • 98
    Peerschke EI, Francis CW, Marder VJ. Fibrinogen binding to human blood platelets: effect of gamma chain carboxyterminal structure and length. Blood 1986; 67: 38590.
  • 99
    Mosesson MW. Update on antithrombin I (fibrin). Thromb Haemost 2007; 98: 1058.
  • 100
    Moaddel M, Falls LA, Farrell DH. The role of gamma A/gamma' fibrinogen in plasma factor XIII activation. J Biol Chem 2000; 275: 3213540.
  • 101
    Lovely RS, Boshkov LK, Marzec UM, Hanson SR, Farrell DH. Fibrinogen gamma' chain carboxy terminal peptide selectively inhibits the intrinsic coagulation pathway. Br J Haematol 2007; 139: 494503.
  • 102
    Grunbacher G, Weger W, Marx-Neuhold E, Pilger E, Koppel H, Wascher T, Marz W, Renner W. The fibrinogen gamma (FGG) 10034C>T polymorphism is associated with venous thrombosis. Thromb Res 2007; 121: 336.
  • 103
    Nowak-Gottl U, Weiler H, Hernandez I, Thedieck S, Seehafer T, Schulte T, Stoll M. Fibrinogen alpha and gamma genes and factor V Leiden in children with thromboembolism: results from 2 family-based association studies. Blood 2009; 114: 194753.
  • 104
    Lovely RS, Falls LA, Al-Mondhiry HA, Chambers CE, Sexton GJ, Ni H, Farrell DH. Association of gammaA/gamma' fibrinogen levels and coronary artery disease. Thromb Haemost 2002; 88: 2631.
  • 105
    Mannila MN, Lovely RS, Kazmierczak SC, Eriksson P, Samnegård A, Farrell DH, Hamsten A, Silveira A. Elevated plasma fibrinogen gamma' concentration is associated with myocardial infarction: effects of variation in fibrinogen genes and environmental factors. J Thromb Haemost 2007; 5: 76673.
  • 106
    Cheung EY, Uitte de Willige S, Vos HL, Leebeek FW, Dippel DW, Bertina RM, de Maat MP. Fibrinogen γ' in ischemic stroke: a case-control study. Stroke 2008; 39: 10335.
  • 107
    Cheung EY, Vos HL, Kruip MJ, den Hertog HM, Jukema JW, de Maat MP. Elevated fibrinogen gamma' ratio is associated with cardiovascular diseases and acute phase reaction but not with clinical outcome. Blood 2009; 114: 46034.
  • 108
    Mannila MN, Eriksson P, Lundman P, Samnegård A, Boquist S, Ericsson CG, Tornvall P, Hamsten A, Silveira A. Contribution of haplotypes across the fibrinogen gene cluster to variation in risk of myocardial infarction. Thromb Haemost 2005; 93: 5707.
  • 109
    Lovely RS, Yang Q, Massaro JM, Wang J, D'Agostino RB Sr, O'Donnell CJ, Shannon J, Farrell DH. Assessment of genetic determinants of the association of γ' fibrinogen in relation to cardiovascular disease. Arterioscler Thromb Vasc Biol 2011; 31: 234552.
  • 110
    Pieters M, Kotze RC, Jerling JC, Kruger A, Ariëns RA. Evidence that fibrinogen γ' regulates plasma clot structure and lysis, and relationship to cardiovascular risk factors in black Africans. Blood. 2013; 121: 325460.
  • 111
    Gersh KC, Edmondson KE, Weisel JW. Flow rate and fibrin fiber alignment. J Thromb Haemost. 2010; 8: 28268.
  • 112
    Neeves KB, Illing DA, Diamond SL. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J 2010; 98: 134452.
  • 113
    Campbell RA, Aleman M, Gray LD, Falvo MR, Wolberg AS. Flow profoundly influences fibrin network structure: implications for fibrin formation and clot stability in haemostasis. Thromb Haemost 2010; 104: 12814.
  • 114
    Gersh KC, Zaitsev S, Cines DB, Muzykantov V, Weisel JW. Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent. Blood 2011; 117: 49647.
  • 115
    Litvinov RI, Barsegov V, Schissler AJ, Fisher AR, Bennett JS, Weisel JW, Shuman H. Dissociation of bimolecular αIIbβ3-fibrinogen complex under a constant tensile force. Biophys J 2011; 100: 16573.
  • 116
    Carvalho FA, Connell S, Miltenberger-Miltenyi G, Pereira SV, Tavares A, Ariëns RA, Santos NC. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano 2010; 4: 460920.
  • 117
    Campbell RA, Overmyer KA, Selzman CH, Sheridan BC, Wolberg AS. Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood 2009; 114: 488696.
  • 118
    Longstaff C, Thelwell C, Williams SC, Silva MM, Szabó L, Kolev K. The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies. Blood 2011; 117: 6618.
  • 119
    Brown AE, Litvinov RI, Discher DE, Purohit PK, Weisel JW. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 2009; 325: 7414.
  • 120
    Collet JP, Shuman H, Ledger RE, Lee S, Weisel JW. The elasticity of an individual fibrin fiber in a clot. Proc Natl Acad Sci USA 2005; 102: 91337.
  • 121
    Liu W, Jawerth LM, Sparks EA, Falvo MR, Hantgan RR, Superfine R, Lord ST, Guthold M. Fibrin fibers have extraordinary extensibility and elasticity. Science 2006; 313: 634.
  • 122
    Abou-Saleh RH, Connell SD, Harrand R, Ajjan RA, Mosesson MW, Smith DA, Grant PJ, Ariëns RA. Nanoscale probing reveals that reduced stiffness of clots from fibrinogen lacking 42 N-terminal Bbeta-chain residues is due to the formation of abnormal oligomers. Biophys J 2009; 96: 241527.
  • 123
    Hudson NE, Houser JR, O'Brien ET 3rd, Taylor RM 2nd, Superfine R, Lord ST, Falvo MR. Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks. Biophys J 2010; 98: 163240.
  • 124
    Kaijzel EL, Koolwijk P, van Erck MG, van Hinsbergh VW, de Maat MP. Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. J Thromb Haemost 2006; 4: 197581.
  • 125
    Weijers EM, van Wijhe MH, Joosten L, Horrevoets AJ, de Maat MP, van Hinsbergh VW, Koolwijk P. Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells. J Thromb Haemost 2010; 8: 28009.
  • 126
    Calcaterra J, van Cott KE, Butler SP, Gil GC, Germano M, van Veen HA, Nelson K, Forsberg EJ, Carlson MA, Velander WH. Recombinant human fibrinogen that produces thick fibrin fibers with increased wound adhesion and clot density. Biomacromolecules 2013; 14: 16978.
  • 127
    Carlisle CR, Sparks EA, Der Loughian C, Guthold M. Strength and failure of fibrin fiber branchpoints. J Thromb Haemost 2010; 8: 11358.