SEARCH

SEARCH BY CITATION

REFERENCES

  • Abramovitz, M, Stegun, I. (1965) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover.
  • Beran, J, Schuetzner, M and Ghosh, S. (2010) From short to long memory: aggregation and estimation. Computational Statistics and Data Analysis 54: 24322442.
  • Bhansali, RJ, Giraitis, L and Kokoszka, P (2007) Approximations and limit theory for quadratic forms of linear processes. Stochastic Processes and their Applications 117: 7195.
  • Billingsley, P. (1968) Convergence of Probability Measures. New York: Wiley.
  • Brandt, A. (1986) The stochastic equation Yn + 1 = AnYn + Bn with stationary coefficients. Advances in Applied Probability 17: 211220.
  • Celov, D, Leipus, R and Philippe, A. (2007) Time series aggregation, disaggregation and long memory. Lithuanian Mathematical Journal 47: 379393.
  • Celov, D, Leipus, R and Philippe, A. (2010) Asymptotic normality of the mixture density estimator in a disaggregation scheme. Journal of Nonparametric Statistics 22: 425442.
  • Cox, DR. (1984). Long-range dependence: a review. In Statistics: An Appraisal, David, HA, David, HT (eds.) Iowa State University Press: Iowa, pp. 5574.
  • Feller, W. (1966) An Introduction to Probability Theory and Its Applications, Vol. 2. New York: Wiley.
  • Gonçalves, E, Gouriéroux, C. (1988) Aggrégation de processus autoregressifs d'ordre 1. Annales d'Economie et de Statistique 12: 127149.
  • Granger, CWJ. (1980) Long memory relationship and the aggregation of dynamic models. Journal of Econometrics 14: 227238.
  • Ibragimov, IA, Linnik, Yuv. (1971) Independent and Stationary Sequences of Random Variables. Groningen: Wolters-Noordhoff.
  • Lavancier, F. (2005). Long memory random fields. In Dependence in Probability and Statistics, , Bertail, P, Doukhan, P, Soulier, P (eds.), Lecture Notes in Statistics, vol. 187 Springer: Berlin, pp. 195220.
  • Lavancier, F. (2011) Aggregation of isotropic random fields. Journal of Statistical Planning and Inference 141: 38623866.
  • Lavancier, F, Leipus, R and Surgailis, D. (2012) Aggregation of anisotropic random-coefficient autoregressive random field. Preprint.
  • Leipus, R, Surgailis, D. (2003) Random coefficient autoregression, regime switching and long memory. Advances in Applied Probability 35: 118.
  • Leipus, R, Oppenheim, G, Philippe, A and Viano, M-C. (2006) Orthogonal series density estimation in a disaggregation scheme. Journal of Statistical Planning and Inference 136: 25472571.
  • Leonenko, N, Taufer, E. (2013) Disaggregation of spatial autoregressive processes. Spatial Statistics 3: 120.
  • Mikosch, T, Resnick, S, Rootzén, H and Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Annals of Applied Probability 12: 2368.
  • Puplinskaitė, D, Surgailis, D. (2009) Aggregation of random coefficient AR1(1) process with infinite variance and common innovations. Lithuanian Mathematical Journal 49: 446463.
  • Puplinskaitė, D, Surgailis, D. (2010) Aggregation of random coefficient AR1(1) process with infinite variance and idiosyncratic innovations. Advances in Applied Probability 42: 509527.
  • Puplinskaitė, D, Surgailis, D. (2012) Aggregation of autoregressive random fields and anisotropic long memory. Preprint.
  • Reed, M, Simon, B. (1975) Methods of Modern Mathematical Physics, Vol. 2. New York: Academic Press.
  • Robinson, P. (1978) Statistical inference for a random coefficient autoregressive model. Scandinavian Journal of Statistics 5: 163168.
  • Rajput, BS, Rosinski, J. (1989) Spectral representations of infinitely divisible processes. Probability Theory and Related Fields 82: 451487.
  • Oppenheim, G, Viano, M-C. (2004) Aggregation of random parameters Ornstein–Uhlenbeck or AR processes: some convergence results. Journal of Time Series Analysis 25: 335350.
  • Sato, K-I. (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press.
  • Surgailis, D. (1981) On infinitely divisible self-similar random fields. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 58: 453477.
  • Zaffaroni, P. (2004) Contemporaneous aggregation of linear dynamic models in large economies. Journal of Econometrics 120: 75102.