SEARCH

SEARCH BY CITATION

Keywords:

  • Alkali landscape;
  • Competition;
  • C-S-R strategies;
  • Humped-back;
  • Plant trait;
  • Productivity;
  • Stress;
  • Steppe

Abstract

Question

Explaining the biomass–species richness relationship is key to understanding vegetation dynamics. Several possible mechanisms have been suggested, but complex analysis of plant strategies, major biomass and species richness components along a long productivity gradient is still lacking. We provide a detailed analysis of the relationship between major biomass components (total above-ground biomass, green biomass and litter), plant strategies and species richness along a long gradient of alkali and loess grasslands in a steppe landscape in Central Europe.

Location

Hortobágy, Great Hungarian Plain, East Hungary.

Methods

Above-ground biomass of characteristic alkali and loess grassland stands was sampled along a gradient of increasing productivity. In each grassland stand, a 25-m2 sample site was randomly selected. Within each site, ten above-ground biomass samples (20 × 20 cm) were collected randomly in June 2009, at the peak of biomass production. We classified all species into mixed C-S-R strategy types. To obtain correlations between various biomass and species richness data, Spearman rank correlation was used. The relationship between plant strategies and species composition were displayed with a DCA ordination.

Results

The frequently detected humped-back relationship was valid for the relation of total biomass and species richness. With increasing amount of total biomass, we detected an increasing proportion of competitors, and a decreasing proportion of stress tolerators in green biomass. A low proportion of ruderals was detected at both low and high biomass levels. Species richness was affected positively by litter at low litter scores, but there was a negative litter effect from much lower scores than detected previously (from 400 g·m−2). There was a positive relationship between green biomass production and species richness.

Conclusions

The study revealed that at the initial part of a productivity gradient, stress is likely responsible for low species richness. Our results show that litter can shape changes in species richness along the whole biomass gradient, thus the litter effect is one of the major mechanisms structuring grassland diversity.