Get access

Evaluation of two decellularization methods in the development of a whole-organ decellularized rat liver scaffold

Authors

  • Haozhen Ren,

    1. Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
    2. Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
    Search for more papers by this author
    • Both co-authors contributed equally to this work.
  • Xiaolei Shi,

    1. Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
    2. Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
    3. Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
    Search for more papers by this author
    • Both co-authors contributed equally to this work.
  • Liang Tao,

    1. Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
    Search for more papers by this author
  • Jiangqiang Xiao,

    1. Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
    Search for more papers by this author
  • Bing Han,

    1. Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
    2. Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
    Search for more papers by this author
  • Yue Zhang,

    1. Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
    2. Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
    Search for more papers by this author
  • Xianwen Yuan,

    1. Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
    2. Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
    3. Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
    Search for more papers by this author
  • Yitao Ding

    Corresponding author
    1. Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
    2. Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
    • Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
    Search for more papers by this author

Correspondence

Yitao Ding, Department of Hepatobiliary Surgery, Nanjing DrumTower Hospital, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu Province, China

Tel: +86-25-83304616-66866

Fax: +86-25-83317016

e-mail: yitaoding@hotmail.com

Abstract

Aim

Hepatic tissue engineering is considered as a possible alternative to liver transplantation for end-stage liver disease. Several methods of decellularization of xenogeneic liver are available to produce three-dimensional organ scaffolds for engineering liver tissues. However, rare studies have examined and compared the effectiveness of different methods on the structure and composition of intact decellularized liver extracellular matrix.

Methods

Two decellularization methods were adopted herein. Their effects on collagen, elastin, glycosaminoglycans (GAGs), hepatocyte growth factor (HGF) content and influence to the function of hepatocytes cultured in scaffolds were examined and compared.

Results

The complete tissue decellularization was successfully achieved after treatment with sodium dodecyl sulphate (SDS) and Triton X-100. The total absence of nuclear structures and removal of viable cells were confirmed by haematoxylin-eosin staining and scanning electron microscopy. Collagen was preserved after both treatments. However, the elastin content decreased to about 20% and 60%, the GAGs content decreased to about 10% and 50% and the HGF content decreased to about 20% and 60% of the native liver level after SDS and Triton X-100 treatment respectively. The Triton X-100-treated scaffolds were much superior than SDS-treated scaffolds in supporting liver-specific function, including albumin secretion (P = 0.001), urea synthesis (P = 0.002), ammonia elimination (P = 0.007) and mRNA expression levels of drug metabolism enzymes.

Conclusion

This study suggested that liver extracellular matrix scaffolds constructed using perfusion of Triton X-100 as described herein might provide a more effective and ideal material for the usage in tissue engineering and regenerative medicine approaches.

Get access to the full text of this article

Ancillary