SEARCH

SEARCH BY CITATION

References

  • 1
    Larson AM, Polson J, Fontana RJ, et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 2005; 42: 136472.
  • 2
    Mandayam S, Jamal MM, Morgan TR. Epidemiology of alcoholic liver disease. Semin Liver Dis 2004; 24: 21732.
  • 3
    Khuroo MS, Kamili S. Aetiology and prognostic factors in acute liver failure in India. J Viral Hepat 2003; 10: 22431.
  • 4
    Acharya SK, Panda SK, Saxena A, Gupta SD. Acute hepatic failure in India: a perspective from the east. J Gastroenterol Hepatol 2000; 15: 4739.
  • 5
    Williams R. Global challenges in liver disease. Hepatology 2006; 44: 5216.
  • 6
    Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Measuring the global burden of disease and risk factors, 1990–2001. 2006; 1: 114.
  • 7
    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3: e442.
  • 8
    Schramm C, Bubenheim M, Adam R, et al. Primary liver transplantation for autoimmune hepatitis: a comparative analysis of the European Liver Transplant Registry. Liver Transpl 2010; 16: 4619.
  • 9
    Adam R, Mcmaster P, O'grady JG, et al. Evolution of liver transplantation in Europe: report of the European Liver Transplant Registry. Liver Transpl 2003; 9: 123143.
  • 10
    Bilir BM, Guinette D, Karrer F, et al. Hepatocyte transplantation in acute liver failure. Liver Transpl 2000; 6: 3240.
  • 11
    Muraca M, Gerunda G, Neri D, et al. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 2002; 359: 3178.
  • 12
    Strom SC, Fisher RA, Thompson MT, et al. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 1997; 63: 55969.
  • 13
    Ellis AJ, Hughes RD, Wendon JA, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996; 24: 144651.
  • 14
    Sussman NL, Chong MG, Koussayer T, et al. Reversal of fulminant hepatic failure using an extracorporeal liver assist device. Hepatology 1992; 16: 605.
  • 15
    Mitzner SR, Stange J, Klammt S, et al. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J Am Soc Nephrol 2001; 12(Suppl. 17): S7582.
  • 16
    Sussman NL, Gislason GT, Conlin CA, Kelly JH. The hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs 1994; 18: 3906.
  • 17
    Rifai K, Ernst T, Kretschmer U, et al. Prometheus–a new extracorporeal system for the treatment of liver failure. J Hepatol 2003; 39: 98490.
  • 18
    Habibullah CM, Syed IH, Qamar A, Taher-Uz Z. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation 1994; 58: 9512.
  • 19
    Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 2004; 6: 5329.
  • 20
    Avital I, Inderbitzin D, Aoki T, et al. Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem Biophys Res Commun 2001; 288: 15664.
  • 21
    Jones EA, Tosh D, Wilson DI, Lindsay S, Forrester LM. Hepatic differentiation of murine embryonic stem cells. Exp Cell Res 2002; 272: 1522.
  • 22
    Yamamoto Y, Teratani T, Yamamoto H, et al. Recapitulation of in vivo gene expression during hepatic differentiation from murine embryonic stem cells. Hepatology 2005; 42: 55867.
  • 23
    Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 2006; 7: 21124.
  • 24
    Ananthanarayanan A, Narmada BC, Mo X, Mcmillian M, Yu H. Purpose-driven biomaterials research in liver-tissue engineering. Trends Biotechnol 2011; 29: 1108.
  • 25
    Toh YC, Zhang C, Zhang J, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 2007; 7: 3029.
  • 26
    Omori Y. New apparatus for artificial liver support: PAT resin–removal of protein-bound substances and its effect on hepatic failure in animals. Nihon Geka Gakkai Zasshi 1985; 86: 56675.
  • 27
    Hughes R, Ton HY, Langley P, et al. Albumin-coated Amberlite XAD-7 resin for hemoperfusion in acute liver failure. Part II: in vivo evaluation. Artif Organs 1979; 3: 236.
  • 28
    Chamuleau RA. Artificial liver support in the third millennium. Artif Cells Blood Substit Immobil Biotechnol 2003; 31: 11726.
  • 29
    Rozga J, Malkowski P. Artificial liver support: quo vadis? Ann Transplant 2010; 15: 92101.
  • 30
    Rozga J. Liver support technology–an update. Xenotransplantation 2006; 13: 3809.
  • 31
    Kjaergard LL, Liu J, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: a systematic review. JAMA 2003; 289: 21722.
  • 32
    Morsiani E, Brogli M, Galavotti D, et al. Biologic liver support: optimal cell source and mass. Int J Artif Organs 2002; 25: 98593.
  • 33
    Chan C, Berthiaume F, Nath BD, et al. Hepatic tissue engineering for adjunct and temporary liver support: critical technologies. Liver Transpl 2004; 10: 133142.
  • 34
    Washizu J, Chan C, Berthiaume F, et al. Amino acid supplementation improves cell-specific functions of the rat hepatocytes exposed to human plasma. Tissue Eng 2000; 6: 497504.
  • 35
    Mareels G, Poyck PP, Eloot S, Chamuleau RA, Verdonck PR. Three-dimensional numerical modeling and computational fluid dynamics simulations to analyze and improve oxygen availability in the AMC bioartificial liver. Ann Biomed Eng 2006; 34: 172944.
  • 36
    Consolo F, Fiore GB, Truscello S, et al. A computational model for the optimization of transport phenomena in a rotating hollow-fiber bioreactor for artificial liver. Tissue Eng Part C Methods 2009; 15: 4155.
  • 37
    Sullivan JP, Gordon JE, Bou-Akl T, Matthew HW, Palmer AF. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers. Artif Cells Blood Substit Immobil Biotechnol 2007; 35: 585606.
  • 38
    Sullivan JP, Harris DR, Palmer AF. Convection and hemoglobin-based oxygen carrier enhanced oxygen transport in a hepatic hollow fiber bioreactor. Artif Cells Blood Substit Immobil Biotechnol 2008; 36: 386402.
  • 39
    Wnek GE, Bowlin GL. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Marcel Dekker; 2004.
  • 40
    Fox IJ, Chowdhury JR. Hepatocyte transplantation. Am J Transplant 2004; 4(Suppl. 6): 713.
  • 41
    Gupta S, Bhargava KK, Novikoff PM. Mechanisms of cell engraftment during liver repopulation with hepatocyte transplantation. Semin Liver Dis 1999; 19: 1526.
  • 42
    Selden C, Casbard A, Themis M, Hodgson HJ. Characterization of long-term survival of syngeneic hepatocytes in rat peritoneum. Cell Transplant 2003; 12: 56978.
  • 43
    Mai G, Nguyen TH, Morel P, et al. Treatment of fulminant liver failure by transplantation of microencapsulated primary or immortalized xenogeneic hepatocytes. Xenotransplantation 2005; 12: 45764.
  • 44
    Mei J, Sgroi A, Mai G, et al. Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant 2009; 18: 10110.
  • 45
    Mai G, Huy NT, Morel P, et al. Treatment of fulminant liver failure by transplantation of microencapsulated primary or immortalized xenogeneic hepatocytes. Transplant Proc 2005; 37: 5279.
  • 46
    Link TW, Arifin DR, Long CM, et al. Use of magnetocapsules for in vivo visualization and enhanced survival of xenogeneic HepG2 cell transplants. Cell Med 2012; 4: 7784.
  • 47
    Rahman TM, Diakanov I, Selden C, Hodgson H. Co-transplantation of encapsulated HepG2 and rat Sertoli cells improves outcome in a thioacetamide induced rat model of acute hepatic failure. Transpl Int 2005; 18: 10019.
  • 48
    Schmidt P, Kerjaschki D, Syre G, et al. Recurrence of intramembraneous glomerulonephritis in 2 consecutive kidney transplantations. Schweiz Med Wochenschr 1978; 108: 7818.
  • 49
    Gupta S, Chowdhary JR. Hepatocyte transplantation: back to the future. Hepatology 1992; 15: 15662.
  • 50
    Fox IJ, Chowdhury JR, Kaufman SS, et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 1998; 338: 14226.
  • 51
    Ambrosino G, Varotto S, Strom SC, et al. Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transplant 2005; 14: 1517.
  • 52
    Ribes-Koninckx C, Ibars EP, Agrasot MA, et al. Clinical outcome of hepatocyte transplantation in four pediatric patients with inherited metabolic diseases. Cell Transplant 2012; 21: 226782.
  • 53
    Takeda K, Tanaka K, Kumamoto T, et al. Living donor liver transplantation for Dorfman-Chanarin syndrome with 1 year follow-up: case report. Transplant Proc 2010; 42: 385861.
  • 54
    Mckiernan P. Liver transplantation and cell therapies for inborn errors of metabolism. J Inherit Metab Dis 2013; DOI: 10.1007/s10545-012-9581-z.
  • 55
    Demetriou AA, Levenson SM, Novikoff PM, et al. Survival, organization, and function of microcarrier-attached hepatocytes transplanted in rats. Proc Natl Acad Sci U S A 1986; 83: 74759.
  • 56
    Hasirci V, Berthiaume F, Bondre SP, et al. Expression of liver-specific functions by rat hepatocytes seeded in treated poly(lactic-co-glycolic) acid biodegradable foams. Tissue Eng 2001; 7: 38594.
  • 57
    Sakai Y, Furukawa K, Ushida T, Tateishi T, Suzuki M. In vitro organization of biohybrid rat liver tissue incorporating growth factor- and hormone-releasing biodegradable polymer microcapsules. Cell Transplant 2001; 10: 47983.
  • 58
    Yang MB, Vacanti JP, Ingber DE. Hollow fibers for hepatocyte encapsulation and transplantation: studies of survival and function in rats. Cell Transplant 1994; 3: 37385.
  • 59
    Gomez N, Balladur P, Calmus Y, et al. Evidence for survival and metabolic activity of encapsulated xenogeneic hepatocytes transplanted without immunosuppression in Gunn rats. Transplantation 1997; 63: 171823.
  • 60
    Yoon JJ, Nam YS, Kim JH, Park TG. Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Biotechnol Bioeng 2002; 78: 110.
  • 61
    Demetriou AA, Reisner A, Sanchez J, et al. Transplantation of microcarrier-attached hepatocytes into 90% partially hepatectomized rats. Hepatology 1988; 8: 10069.
  • 62
    Nagaki M, Kano T, Muto Y, et al. Effects of intraperitoneal transplantation of microcarrier-attached hepatocytes on D-galactosamine-induced acute liver failure in rats. Gastroenterol Jpn 1990; 25: 7887.
  • 63
    Haque T, Chen H, Ouyang W, et al. In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett 2005; 27: 31722.
  • 64
    Wells GD, Fisher MM, Sefton MV. Microencapsulation of viable hepatocytes in HEMA-MMA microcapsules: a preliminary study. Biomaterials 1993; 14: 61520.
  • 65
    Rihova B. Immunocompatibility and biocompatibility of cell delivery systems. Adv Drug Deliv Rev 2000; 42: 6580.
  • 66
    Roger V, Balladur P, Honiger J, et al. Internal bioartificial liver with xenogeneic hepatocytes prevents death from acute liver failure: an experimental study. Ann Surg 1998; 228: 17.
  • 67
    Donato MT, Castell JV, Gomez-Lechon MJ. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models. J Hepatol 1999; 31: 5429.
  • 68
    Park JK, Lee DH. Bioartificial liver systems: current status and future perspective. J Biosci Bioeng 2005; 99: 3119.
  • 69
    van de Kerkhove MP, Hoekstra R, Chamuleau RA, van Gulik TM. Clinical application of bio artificial liver support systems. Ann Surg 2004; 240: 21630.
  • 70
    Mitry RR, Hughes RD, Dhawan A. Progress in human hepatocytes: isolation, culture & cryopreservation. Semin Cell Dev Biol 2002; 13: 4637.
  • 71
    Lloyd TD, Orr S, Skett P, Berry DP, Dennison AR. Cryopreservation of hepatocytes: a review of current methods for banking. Cell Tissue Bank 2003; 4: 315.
  • 72
    Terry C, Dhawan A, Mitry RR, Lehec SC, Hughes RD. Preincubation of rat and human hepatocytes with cytoprotectants prior to cryopreservation can improve viability and function upon thawing. Liver Transpl 2006; 12: 16577.
  • 73
    Loretz LJ, Li AP, Flye MW, Wilson AG. Optimization of cryopreservation procedures for rat and human hepatocytes. Xenobiotica 1989; 19: 48998.
  • 74
    Morsiani E, Pazzi P, Puviani AC, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs 2002; 25: 192202.
  • 75
    Walldorf J, Aurich H, Cai H, et al. Expanding hepatocytes in vitro before cell transplantation: donor age-dependent proliferative capacity of cultured human hepatocytes. Scand J Gastroenterol 2004; 39: 58493.
  • 76
    Naruse K, Sakai Y, Nagashima I, et al. Comparisons of porcine hepatocyte spheroids and single hepatocytes in the non-woven fabric bioartificial liver module. Int J Artif Organs 1996; 19: 6059.
  • 77
    Naruse K, Nagashima I, Sakai Y, et al. Efficacy of a bioreactor filled with porcine hepatocytes immobilized on nonwoven fabric for ex vivo direct hemoperfusion treatment of liver failure in pigs. Artif Organs 1998; 22: 10317.
  • 78
    Naruse K, Sakai Y, Lei G, et al. Efficacy of nonwoven fabric bioreactor immobilized with porcine hepatocytes for ex vivo xenogeneic perfusion treatment of liver failure in dogs. Artif Organs 2001; 25: 27380.
  • 79
    Wyss OA. Nerve stimulation with middle-frequency current pulses. Helv Physiol Pharmacol Acta 1967; 25: 85102.
  • 80
    Te velde AA, Ladiges NC, Flendrig LM, Chamuleau RA. Functional activity of isolated pig hepatocytes attached to different extracellular matrix substrates. Implication for application of pig hepatocytes in a bioartificial liver. J Hepatol 1995; 23: 18492.
  • 81
    Giri S, Acikgoz A, Pathak P, et al. Three dimensional cultures of rat liver cells using a natural self-assembling nanoscaffold in a clinically relevant bioreactor for bioartificial liver construction. J Cell Physiol 2012; 227: 31327.
  • 82
    Joly A, Desjardins JF, Fremond B, et al. Survival, proliferation, and functions of porcine hepatocytes encapsulated in coated alginate beads: a step toward a reliable bioartificial liver. Transplantation 1997; 63: 795803.
  • 83
    Gautier A, Carpentier B, Dufresne M, et al. Impact of alginate type and bead diameter on mass transfers and the metabolic activities of encapsulated C3A cells in bioartificial liver applications. Eur Cell Mater 2011; 21: 94106.
  • 84
    Sarkis R, Benoist S, Honiger J, et al. Transplanted cryopreserved encapsulated porcine hepatocytes are as effective as fresh hepatocytes in preventing death from acute liver failure in rats. Transplantation 2000; 70: 5864.
  • 85
    Wu FJ, Peshwa MV, Cerra FB, Hu WS. Entrapment of hepatocyte spheroids in a hollow fiber bioreactor as a potential bioartificial liver. Tissue Eng 1995; 1: 2940.
  • 86
    Massie I, Selden C, Hodgson H, Fuller B. Cryopreservation of encapsulated liver spheroids for a bioartificial liver: reducing latent cryoinjury using an ice nucleating agent. Tissue Eng Part C Methods 2011; 17: 76574.
  • 87
    Yang Q, Liu F, Pan XP, et al. Fluidized-bed bioartificial liver assist devices (BLADs) based on microencapsulated primary porcine hepatocytes have risk of porcine endogenous retroviruses transmission. Hepatol Int 2010; 4: 75761.
  • 88
    Baquerizo A, Mhoyan A, Kearns-Jonker M, et al. Characterization of human xenoreactive antibodies in liver failure patients exposed to pig hepatocytes after bioartificial liver treatment: an ex vivo model of pig to human xenotransplantation. Transplantation 1999; 67: 518.
  • 89
    Schulte arn Esch J, Hamann D, Soltau M, et al. Human antibody deposition, complement activation, and DNA fragmentation are observed for porcine hepatocytes in a clinically applied bioartificial liver assist system. Transplant Proc 2002; 34: 2321.
  • 90
    Te velde AA, Flendrig LM, Ladiges NC, Chamuleau RA. Immunological consequences of the use of xenogeneic hepatocytes in a bioartificial liver for acute liver failure. Int J Artif Organs 1997; 20: 22933.
  • 91
    Hewitt NJ. Optimisation of the cryopreservation of primary hepatocytes. Methods Mol Biol 2010; 640: 83105.
  • 92
    Sahi J, Grepper S, Smith C. Hepatocytes as a tool in drug metabolism, transport and safety evaluations in drug discovery. Curr Drug Discov Technol 2010; 7: 18898.
  • 93
    Guillouzo A. Liver cell models in in vitro toxicology. Environ Health Perspect 1998; 106(Suppl. 2): 51132.
  • 94
    Gomez-lechon MJ, Donato MT, Castell JV, Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 2003; 4: 292312.
  • 95
    Kelly JH, Koussayer T, He D, et al. Assessment of an extracorporeal liver assist device in anhepatic dogs. Artif Organs 1992; 16: 41822.
  • 96
    el Mouelhi M, Didolkar MS, Elias EG, Guengerich FP, Kauffman FC. Hepatic drug-metabolizing enzymes in primary and secondary tumors of human liver. Cancer Res 1987; 47: 4606.
  • 97
    Wang L, Sun J, Li L, et al. Comparison of porcine hepatocytes with human hepatoma (C3A) cells for use in a bioartificial liver support system. Cell Transplant 1998; 7: 45968.
  • 98
    Tsiaoussis J, Newsome PN, Nelson LJ, Hayes PC, Plevris JN. Which hepatocyte will it be? Hepatocyte choice for bioartificial liver support systems. Liver Transpl 2001; 7: 210.
  • 99
    Mazariegos GV, Patzer JF 2nd , Lopez RC, et al. First clinical use of a novel bioartificial liver support system (BLSS). Am J Transplant 2002; 2: 2606.
  • 100
    Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 1980; 209: 4979.
  • 101
    Allen JW, Hassanein T, Bhatia SN. Advances in bioartificial liver devices. Hepatology 2001; 34: 44755.
  • 102
    Li J, Li LJ, Cao HC, et al. Establishment of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy. ASAIO J 2005; 51: 2628.
  • 103
    Schippers IJ, Moshage H, Roelofsen H, et al. Immortalized human hepatocytes as a tool for the study of hepatocytic (de-)differentiation. Cell Biol Toxicol 1997; 13: 37586.
  • 104
    Werner A, Duvar S, Muthing J, et al. Cultivation and characterization of a new immortalized human hepatocyte cell line, HepZ, for use in an artificial liver support system. Ann N Y Acad Sci 1999; 875: 3648.
  • 105
    Kobayashi N, Okitsu T, Tanaka N. Cell choice for bioartificial livers. Keio J Med 2003; 52: 1517.
  • 106
    Kobayashi N, Fujiwara T, Westerman KA, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000; 287: 125862.
  • 107
    Kobayashi N, Noguchi H, Fujiwara T, Tanaka N. Establishment of a reversibly immortalized human hepatocyte cell line by using Cre/loxP site-specific recombination. Transplant Proc 2000; 32: 11212.
  • 108
    Noguchi H, Kobayashi N, Westerman KA, et al. Controlled expansion of human endothelial cell populations by Cre-loxP-based reversible immortalization. Hum Gene Ther 2002; 13: 32134.
  • 109
    Watanabe T, Shibata N, Westerman KA, et al. Establishment of immortalized human hepatic stellate scavenger cells to develop bioartificial livers. Transplantation 2003; 75: 187380.
  • 110
    Stutchfield BM, Forbes SJ, Wigmore SJ. Prospects for stem cell transplantation in the treatment of hepatic disease. Liver Transpl 2010; 16: 82736.
  • 111
    Szkolnicka D, Zhou W, Lucendo-villarin B, Hay DC. Pluripotent stem cell-derived hepatocytes: potential and challenges in pharmacology. Annu Rev Pharmacol Toxicol 2013; 53: 14759.
  • 112
    Stock P, Staege MS, Muller LP, et al. Hepatocytes derived from adult stem cells. Transplant Proc 2008; 40: 6203.
  • 113
    Saulnier N, Lattanzi W, Puglisi MA, et al. Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 2009; 13(Suppl. 1): 718.
  • 114
    Sgodda M, Aurich H, Kleist S, et al. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 2007; 313: 287586.
  • 115
    Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 2005; 106: 75663.
  • 116
    Baertschiger RM, Serre-Beinier V, Morel P, et al. Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver. PLoS ONE 2009; 4: e6657.
  • 117
    di Bonzo LV, Ferrero I, Cravanzola C, et al. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 2008; 57: 22331.
  • 118
    Piryaei A, Valojerdi MR, Shahsavani M, Baharvand H. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev 2011; 7: 10318.
  • 119
    Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 2004; 39: 147787.
  • 120
    Dumble ML, Croager EJ, Yeoh GC, Quail EA. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis 2002; 23: 43545.
  • 121
    Wege H, Le HT, Chui MS, et al. Telomerase reconstitution immortalizes human fetal hepatocytes without disrupting their differentiation potential. Gastroenterology 2003; 124: 43244.
  • 122
    Yoon JH, Lee HV, Lee JS, Park JB, Kim CY. Development of a non-transformed human liver cell line with differentiated-hepatocyte and urea-synthetic functions: applicable for bioartificial liver. Int J Artif Organs 1999; 22(11): 76977.
  • 123
    Deurholt T, van Til NP, Chhatta AA, et al. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009; 9: 89.
  • 124
    Poyck PP, van Wijk AC, van der Hoeven TV, et al. Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver. J Hepatol 2008; 48: 26675.
  • 125
    Poyck PP, Hoekstra R, van Wijk AC, et al. Functional and morphological comparison of three primary liver cell types cultured in the AMC bioartificial liver. Liver Transpl 2007; 13: 58998.
  • 126
    Chen Y, Li J, Liu X, et al. Transplantation of immortalized human fetal hepatocytes prevents acute liver failure in 90% hepatectomized mice. Transplant Proc 2010; 42: 190714.
  • 127
    Khan AA, Habeeb A, Parveen N, et al. Peritoneal transplantation of human fetal hepatocytes for the treatment of acute fatty liver of pregnancy: a case report. Trop Gastroenterol 2004; 25: 1413.
  • 128
    Diekmann S, Bader A, Schmitmeier S. Present and Future Developments in Hepatic Tissue Engineering for Liver Support Systems: State of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnology 2006; 3: 16379.
  • 129
    Mahieu-Caputo D, Allain JE, Branger J, et al. Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Hum Gene Ther 2004; 15(12): 121928.
  • 130
    Malhi H, Irani AN, Gagandeep S, Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci 2002; 13: 267988.
  • 131
    Suzuki A, Zheng Y, Kondo R, et al. Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology 2000; 32: 12309.
  • 132
    Suzuki A, Zheng YW, Kaneko S, et al. Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol 2002; 156: 17384.
  • 133
    Oh SK, Chen AK, Mok Y, et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2009; 2: 21930.
  • 134
    Hay DC, Fletcher J, Payne C, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A 2008; 105(34): 123016.
  • 135
    Lu H, Wang Z, Zheng Q, et al. Efficient differentiation of newly derived human embryonic stem cells from discarded blastocysts into hepatocyte-like cells. J Dig Dis 2010; 11: 37682.
  • 136
    Touboul T, Hannan NR, Corbineau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 2010; 51: 175465.
  • 137
    Hay DC, Zhao D, Fletcher J, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 2008; 26: 894902.
  • 138
    Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005; 20: 32735.
  • 139
    Zhou W, Hannoun Z, Jaffray E, et al. SUMOylation of HNF4alpha regulates protein stability and hepatocyte function. J Cell Sci 2012; 125 (Part 15): 36305.
  • 140
    Payne CM, Samuel K, Pryde A, et al. Persistence of functional hepatocyte-like cells in immune-compromised mice. Liver Int 2011; 31: 25462.
  • 141
    Sullivan GJ, Hay DC, Park IH, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 2010; 51: 32935.
  • 142
    Liu H, Ye Z, Kim Y, Sharkis S, Jang YY. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 2010; 51: 18109.
  • 143
    Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011; 475: 3903.
  • 144
    Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011; 475: 3869.
  • 145
    Malik R, Selden C, Hodgson H. The role of non-parenchymal cells in liver growth. Semin Cell Dev Biol 2002; 13: 42531.
  • 146
    Meren H, Matsumura T, Kauffman FC, Thurman RG. Relationship between oxygen tension and oxygen uptake in the perfused rat liver. Adv Exp Med Biol 1986; 200: 46776.
  • 147
    Matsumura T, Kauffman FC, Meren H, Thurman RG. O2 uptake in periportal and pericentral regions of liver lobule in perfused liver. Am J Physiol 1986; 1: G8005.
  • 148
    Matsumura T, Thurman RG. Measuring rates of O2 uptake in periportal and pericentral regions of liver lobule: stop-flow experiments with perfused liver. Am J Physiol 1983; 244: G6569.
  • 149
    Maher JJ, Bissell DM. Cell-matrix interactions in liver. Semin Cell Biol 1993; 4: 189201.
  • 150
    Fujita M, Spray DC, Choi H, et al. Extracellular matrix regulation of cell-cell communication and tissue-specific gene expression in primary liver cultures. Prog Clin Biol Res 1986; 226: 33360.
  • 151
    Castell JV, Gomez-Lechon MJ. Liver cell culture techniques. Methods Mol Biol 2009; 481: 3546.
  • 152
    Dunn JC, Yarmush ML, Koebe HG, Tompkins RG. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J 1989; 3: 1747.
  • 153
    Kim Y, Lasher CD, Milford LM, Murali TM, Rajagopalan P. A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Part C Methods 2010; 16: 144960.
  • 154
    Mathijs K, Kienhuis AS, Brauers KJ, et al. Assessing the metabolic competence of sandwich-cultured mouse primary hepatocytes. Drug Metab Dispos 2009; 37: 130511.
  • 155
    Swift B, Brouwer KL. Influence of seeding density and extracellular matrix on bile Acid transport and mrp4 expression in sandwich-cultured mouse hepatocytes. Mol Pharm 2010; 7: 491500.
  • 156
    Ansede JH, Smith WR, Perry CH, St Claire RL 3rd, Brouwer KR. An in vitro assay to assess transporter-based cholestatic hepatotoxicity using sandwich-cultured rat hepatocytes. Drug Metab Dispos 2010; 38: 27680.
  • 157
    Tuschl G, Mueller SO. Effects of cell culture conditions on primary rat hepatocytes-cell morphology and differential gene expression. Toxicology 2006; 3: 20515.
  • 158
    Treijtel N, van Helvoort H, Barendregt A, Blaauboer BJ, van Eijkeren JC. The use of sandwich-cultured rat hepatocytes to determine the intrinsic clearance of compounds with different extraction ratios: 7-ethoxycoumarin and warfarin. Drug Metab Dispos 2005; 33: 132532.
  • 159
    Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999; 13: 1883900.
  • 160
    Guguen-Guillouzo C, Clement B, Baffet G, et al. Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp Cell Res 1983; 143: 4754.
  • 161
    Mesnil M, Fraslin JM, Piccoli C, Yamasaki H, Guguen-Guillouzo C. Cell contact but not junctional communication (dye coupling) with biliary epithelial cells is required for hepatocytes to maintain differentiated functions. Exp Cell Res 1987; 173: 52433.
  • 162
    Begue JM, Guguen-Guillouzo C, Pasdeloup N, Guillouzo A. Prolonged maintenance of active cytochrome P-450 in adult rat hepatocytes co-cultured with another liver cell type. Hepatology 1984; 4: 83942.
  • 163
    Mertens K, Rogiers V, Vercruysse A. Glutathione dependent detoxication in adult rat hepatocytes under various culture conditions. Arch Toxicol 1993; 67: 6805.
  • 164
    Rojkind M, Novikoff PM, Greenwel P, et al. Characterization and functional studies on rat liver fat-storing cell line and freshly isolated hepatocyte coculture system. Am J Pathol 1995; 146: 150820.
  • 165
    Busse B, Gerlach JC. Bioreactors for hybrid liver support: historical aspects and novel designs. Ann N Y Acad Sci 1999; 875: 32639.
  • 166
    Hay DC, Pernagallo S, Diaz-Mochon JJ, et al. Unbiased screening of polymer libraries to define novel substrates for functional hepatocytes with inducible drug metabolism. Stem Cell Res 2011; 6: 92102.
  • 167
    Chang RC, Emami K, Jeevarajan A, Wu H, Sun W. Microprinting of liver micro-organ for drug metabolism study. Methods Mol Biol 2011; 671: 21938.