• 1
    Spangenberg HC, Thimme R, Blum HE. Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2009; 6: 42332.
  • 2
    Huynh H. Tyrosine kinase inhibitors to treat liver cancer. Expert Opin Emerg Drugs 2010; 15: 1326.
  • 3
    Heo J, Breitbach CJ, Moon A, et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol Ther 2011; 19: 11709.
  • 4
    Höpfner M, Schuppan D, Scherübl H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. World J Gastroenterol 2008; 14: 114.
  • 5
    Xu C, Lee SA, Chen X. RNA interference as therapeutics for hepatocellular carcinoma. Recent Pat Anticancer Drug Discov 2011; 6: 10615.
  • 6
    Breous E, Thimme R. Potential of immunotherapy for hepatocellular carcinoma. J Hepatol 2011; 54: 8304.
  • 7
    Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 2002; 99: 102313.
  • 8
    Comunale MA, Lowman M, Long RE, et al. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res 2006; 5: 30815.
  • 9
    Goldman R, Ressom HW, Varghese RS, et al. Detection of hepatocellular carcinoma using glycomic analysis. Clin Cancer Res 2009; 15: 180813.
  • 10
    Liu XE, Desmyter L, Gao CF, et al. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology 2007; 46: 142635.
  • 11
    Ressom HW, Varghese RS, Goldman L, et al. Analysis of MALDI-TOF mass spectrometry data for discovery of peptide and glycan biomarkers of hepatocellular carcinoma. J Proteome Res 2008; 7: 60310.
  • 12
    Tang Z, Varghese RS, Bekesova S, et al. Identification of N-glycan serum markers associated with hepatocellular carcinoma from mass spectrometry data. J Proteome Res 2010; 9: 10412.
  • 13
    Yamashita K, Koide N, Endo T, Iwaki Y, Kobata A. Altered glycosylation of serum transferrin of patients with hepatocellular carcinoma. J Biol Chem 1989; 264: 241523.
  • 14
    Campion B, Léger D, Wieruszeski JM, Montreuil J, Spik G. Presence of fucosylated triantennary, tetraantennary and pentaantennary glycans in transferrin synthesized by the human hepatocarcinoma cell line Hep G2. Eur J Biochem 1989; 184: 40513.
  • 15
    Ohno M, Nishikawa A, Koketsu M, et al. Enzymatic basis of sugar structures of alpha-fetoprotein in hepatoma and hepatoblastoma cell lines: correlation with activities of alpha 1-6 fucosyltransferase and N-acetylglucosaminyltransferases III and V. Int J Cancer 1992; 51: 3157.
  • 16
    Nouso K, Kobayashi Y, Nakamura S, et al. Prognostic importance of fucosylated alpha-fetoprotein in hepatocellular carcinoma patients with low alpha-fetoprotein. J Gastroenterol Hepatol 2011; 26: 1195200.
  • 17
    Fang M, Dewaele S, Zhao YP, et al. Serum N-glycome biomarker for monitoring development of DENA-induced hepatocellular carcinoma in rat. Mol Cancer 2010; 9: 215.
  • 18
    Dai Z, Liu YK, Cui JF, et al. Identification and analysis of altered alpha1,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics 2006; 6: 585767.
  • 19
    Souady J, Hülsewig M, Distler U, et al. Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 2011; 21: 58494.
  • 20
    Zhao Y, Zhang JR, Fan SD, Li P. Isolation and purification of hepatoma associated fucosylated neutral glycosphingolipids and its effect on cytotoxicity of NK and LAK cells. J Dig Dis 1998; 6: 94850.
  • 21
    Li Y, Zhou D, Xia C, Wang PG, Levery SB. Sensitive quantitation of isoglobotriaosylceramide in the presence of isobaric components using electrospray ionization-ion trap mass spectrometry. Glycobiology 2008; 18: 16676.
  • 22
    Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 1984; 131: 20917.
  • 23
    Ciucanu I, Costello CE. Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc 2003; 125: 162139.
  • 24
    Harvey DJ. Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun Mass Spectrom 1993; 7: 6149.
  • 25
    Naven TJ, Harvey DJ. Effect of structure on the signal strength of oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Rapid Commun Mass Spectrom 1996; 10: 13616.
  • 26
    Papac DI, Wong A, Jones AJ. Analysis of acidic oligosaccharides and glycopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 1996; 68: 321523.
  • 27
    Li FF, Lin B, Hao YY, et al. Inhibitory effect of anti-Lewis y antibody on α1,2-fucosyltransferase gene transfected human ovarian cancer cells in vitro. Chin J Cell Mol Immunol 2008; 24: 43542.
  • 28
    Zhang H, Singh S, Reinhold VN. Congruent strategies for carbohydrate sequencing. 2. FragLib: an MSn spectral library. Anal Chem 2005; 77: 626370.
  • 29
    Chang WW, Lee CH, Lee P, et al. Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci USA 2008; 105: 1166772.
  • 30
    Canevari S, Fossati G, Balsari A, Sonnino S, Colnaghi MI. Immunochemical analysis of the determinant recognized by a monoclonal antibody (MBr1) which specifically binds to human mammary epithelial cells. Cancer Res 1983; 43: 13015.
  • 31
    Mariani-Costantini R, Barbanti P, Colnaghi MI, et al. Reactivity of a monoclonal antibody with tissues and tumors from the human breast. Immunohistochemical localization of a new antigen and clinicopathologic correlations. Am J Pathol 1984; 115: 4756.
  • 32
    Zhang S, Cordon-Cardo C, Zhang HS, et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: i Focus on gangliosides. Int J Cancer 1997; 73: 429.
  • 33
    Stahl M, Uemura K, Ge C, et al. Roles of Pofut1 and O-fucose in mammalian Notch signaling. J Biol Chem 2008; 283: 1363851.
  • 34
    Linchao Lu, Stanley Pamela. Roles of O-Fucose Glycans in Notch Signaling Revealed by Mutant Mice. Methods Enzymol 2006; 417: 12736.
  • 35
    Yao D, Huang Y, Huang X, et al. Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions. Blood 2011; 117: 565262.
  • 36
    Domenico P, Silvia A, Leonardo E, et al. RNA-Mediated gene silencing of FUT1 and FUT2 influences expression and activities of bovine and human fucosylated nucleolin and inhibits cell adhesion and proliferation. J Cell Biochem. 2010 111: 22938.
  • 37
    Guo Q, Guo B, Wang Y, et al. Functional analysis of a1,3/4-fucosyltransferase VI in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 417: 3117.
  • 38
    Nakagawa T, Miyoshi E, Yakushijin T, et al. Glycomic analysis of alpha-fetoprotein L3 in hepatoma cell lines and hepatocellular carcinoma patients. J Proteome Res 2008; 7: 222233.
  • 39
    Ji J, Gu X, Fang M, et al. Expression of alpha 1,6-fucosyltransferase 8 in hepatitis B virus-related hepatocellular carcinoma influences tumour progression. Dig Liver Dis 2013; 45: 41421.
  • 40
    Miyoshi E, Shinzaki S, Moriwaki K, Matsumoto H. Identification of fucosylated haptoglobin as a novel tumor marker for pancreatic cancer and its possible application for a clinical diagnostic test. Methods Enzymol 2010; 478: 15364.
  • 41
    Pompach P, Brnakova Z, Sanda M, et al. Site-specific glycoforms of haptoglobin in liver cirrhosis and hepatocellular carcinoma. Mol Cell Proteomics 2013; 12: 128193.