SEARCH

SEARCH BY CITATION

Keywords:

  • ammonia;
  • cerebral haemodynamics;
  • cerebral oedema;
  • cytokines and astrocyte;
  • hepatic encephalopathy;
  • inflammation

Abstract

Background & Aims

Microglia and astrocyte related pro-inflammatory responses are thought to underpin cerebral sequelae of acute liver failure. Conversely, despite background pro-inflammatory responses in cirrhosis, overt brain swelling and coma associated with acute-on-chronic liver failure, is infrequent unless precipitated (e.g. sepsis). Moreover in other chronic neurodegenerative disorders and sepsis, the brain is protected from recurrent microbial insults by compensatory microglial-associated immune responses. To characterise longitudinal cerebral immune responses in a bile duct-ligated (BDL) rat model of cirrhosis.

Method

Rats underwent BDL or sham operation before sacrifice at either 1-day, 1, 2 and 4 weeks post-surgery. We analysed consciousness, brain water, biochemistry and immunohistochemistry to assess activation of microglia (ED-1, OX6 and Iba-1), astrocytes (Glial fibrillary acidic protein - GFAP), cellular stress (Heat shock protein - Hsp 25) and pro-inflammatory mediator expression (inducible nitric oxide synthase (iNOS), interleukin-1beta (IL-1β) and tumour growth factor-beta (TGF-β)).

Results

BDL significantly increased ammonia and bilirubin (P < 0.01 respectively). The classical microglial markers OX6, ED1 and Iba-1 and pro-inflammatory IL-1β and iNOS were not significantly increased. However, the alternative microglial marker and regulatory cytokine TGF-β was elevated from day 1 to 4 weeks post-BDL. GFAP expression was significantly increased in corpus callosum in all groups. In BDL rats, Hsp 25 was also increased in the corpus callosum, peaking at 2 weeks.

Conclusion

BDL triggers early alternative, but not classical, microglial activation. There was a correlation between astrocyte activation and cellular stress. These findings indicate early cerebral immune responses, which may be associated with immune tolerance to further challenge.