SEARCH

SEARCH BY CITATION

REFERENCES

  • Allen, F., and D. Gale (2000): Financial Contagion, J. Polit. Econ. 108(1), 133.
  • Amini, H. (2010a): Bootstrap Percolation and Diffusion in Random Graphs with Given Vertex Degrees, Electron. J. Comb. 17, R25.
  • Amini, H. (2010b): Bootstrap Percolation in Living Neural Networks, J. Stat. Phys. 141, 459475.
  • Amini, H., R. Cont, and A. Minca (2012a): Stress Testing the Resilience of Financial Networks, Int. J. Theor. Appl. Finance 15(1), 1250006-11250006-20.
  • Amini, H., A. Minca, and A. Sulem (2012b): Optimal Equity Infusions in Interbank Networks, Preprint available at http://ssrn.com/paper=2128476.
  • Balogh, J., and B. Bollobás (2006): Bootstrap Percolation on the Hypercube, Probab. Theory Related Fields 134(4), 624648.
  • Balogh, J., and B. G. Pittel (2007): Bootstrap Percolation on the Random Regular Graph, Random Struct. Algorithms 30(1–2), 257286.
  • Battiston, S., D. D. Gatti, M. Gallegati, B. Greenwald, and J. E. Stiglitz (2012): Liaisons Dangereuses: Increasing Connectivity, Risk Sharing, and Systemic Risk, J. Econ. Dyn. Control. 36(8), 11211141.
  • Bech, M. L., and E. Atalay (2010): The Topology of the Federal Funds Market, Phys. A: Stat. Mech. Appl. 389(22), 52235246.
  • Blanchard, P., C.-H. Chang, and T. Krüger (2003): Epidemic Thresholds on Scale-Free Graphs: The Interplay between Exponent and Preferential Choice, Ann. Henri Poincaré 4(suppl. 2), S957S970.
  • Bollobás, B. (2001): Random Graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, Cambridge, UK: Cambridge University Press.
  • Boss, M., H. Elsinger, M. Summer, and S. Thurner (2004): Network Topology of the Interbank Market, Quantit. Finance 4(6), 677684.
  • Chung, F., and L. Lu (2002): Connected Components in Random Graphs with Given Expected Degree Sequences, Ann. Comb. 6, 125145.
  • Cont, R., A. Moussa, and E. B. Santos (2012): Network Structure and Systemic Risk in Banking Systems, in Handbook of Systemic Risk, J.-P. Fouque and J. Langsam, eds., Cambridge, UK: Cambridge University Press.
  • Cooper, C., and A. M. Frieze (2004): The Size of the Largest Strongly Connected Component of a Random Digraph with a Given Degree Sequence, Comb. Probab. Comput. 13(3), 319337.
  • Eisenberg, L., and T. H. Noe (2001): Systemic Risk in Financial Systems, Manage. Sci. 47(2), 236249.
  • Elsinger, H., A. Lehar, and M. Summer (2006): Risk Assessment for Banking Systems, Manage. Sci. 52(9), 13011314.
  • Fountoulakis, N. (2007): Percolation on Sparse Random Graphs with Given Degree Sequence, Internet Math. 4(4), 329356.
  • Furfine, C. H. (1999): The Microstructure of the Federal Funds Market, Financ. Markets Inst. Instrum. 8(5), 2444.
  • Gai, P., and S. Kapadia (2010): Contagion in Financial Networks, Proc. R. Soc. A 466(2120), 24012423.
  • Graham, C. (2008): Chaoticity for Multiclass Systems and Exchangeability within Classes, J. Appl. Probab. 45(4), 11961203.
  • Hellwig, M. (1995): Systemic Aspects of Risk Management in Banking and Finance, Swiss J. Econ. Stat. 131, 723737.
  • Holroyd, A. E. (2003): Sharp Metastability Threshold for Two-Dimensional Bootstrap Percolation, Prob. Theory Related Fields 125(2), 195224.
  • Hurewicz, W. (1958): Lectures on Ordinary Differential Equations, Cambridge, MA: The Technology Press of the Massachusetts Institute of Technology.
  • Janson, S. (2009a): On Percolation in Random Graphs with Given Vertex Degrees, Electron. J. Probab. 14, 86118.
  • Janson, S. (2009b): The Probability That a Random Multigraph Is Simple, Comb. Prob. Comput. 18(1–2), 205225.
  • Kiyotaki, N., and J. Moore (2002): Balance-Sheet Contagion, Am. Econ. Rev. 92(2), 4650.
  • Lelarge, M. (2012): Diffusion and Cascading Behavior in Random Networks, Games Econ. Behav. 75(2), 752775.
  • May, R. M., and N. Arinaminpathy (2010): Systemic Risk: The Dynamics of Model Banking Systems, J. R. Soc. Interf. 7(46), 823838.
  • Minca, A. (2011): Mathematical Modeling of Default Contagion. PhD thesis, Université Paris VI (Pierre et Marie Curie).
  • Molloy, M., and B. Reed (1998): The Size of the Giant Component of a Random Graph with a Given Degree Sequence, Comb. Probab. Comput. 7, 295305.
  • Nier, E., J. Yang, T. Yorulmazer, and A. Alentorn (2007): Network Models and Financial Stability, J. Econ. Dyn. Control 31(6), 20332060.
  • Rochet, J.-C., and J. Tirole (1996): Interbank Lending and Systemic Risk, J. Money Credit Bank. 28(4), 733762.
  • Soramaki, K., M.L. Bech, J. Arnold, R. J. Glass, and W. E. Beyeler (2007): The Topology of Interbank Payment Flows, Phys. A: Stat. Mech. Appl. 379(1), 317333.
  • Upper, C. (2011): Simulation Methods to Assess the Danger of Contagion in Interbank Markets, J. Financ. Stab. 7, 111125.
  • Watts, D. J. (2002): A Simple Model of Global Cascades on Random Networks, Proc. Natl. Acad. Sci. USA 99(9), 57665771.
  • Wormald, N. (1995): Differential Equations for Random Processes and Random Graphs, Ann. Appl. Probab. 5(4), 12171235.