SEARCH

SEARCH BY CITATION

REFERENCES

  • Acciaio, B., M. Beiglböck, F. Penkner, W. Schachermayer, and J. Temme (2013): A Trajectorial Interpretation of Doob's Martingale Inequalities, Ann. Appl. Probab., 23(4), 14941505.
  • Beiglböck, M., P. Henry-Labordère, and F. Penkner (2013): Model-independent Bounds for Option Prices: A Mass Transport Approach. Finance Stoch., 17(3), 477501.
  • Beiglböck, M., and N. Juillet (2012): On a Problem of Optimal Transport Under Marginal Martingale Constraints, preprint, ArXiv e-prints 151.
  • Breeden, D. T., and R. H. Litzenberger (1978): Prices of State-Contingent Claims Implicit in Option Prices, J. Business 51(4), 621651.
  • Brown, H., D. Hobson, and L. C. G. Rogers (2001): Robust Hedging of Barrier Options, Math. Finance 11(3), 285314.
  • Buehler, H. (2006): Expensive Martingales, Quant. Finance 6(3), 207218.
  • Campi, L. (2010): Super-Hedging, in Encyclopedia of Quantitative Finance, R. Cont ed., Chichester, UK: Wiley.
  • Carr, P., and D. B. Madan (2005): A Note on Sufficient Conditions for No Arbitrage, Finance Res. Lett. 2(3), 125130.
  • Cox, A. M. G., D. Hobson, and J. Obłój (2008): Pathwise Inequalities for Local Time: Applications to Skorokhod Embeddings and Optimal Stopping, Ann. Appl. Probab. 18(5), 18701896.
  • Cox, A. M. G., and J. Obłój (2011a): Robust Pricing and Hedging of Double No-Touch Options, Finance Stoch. 15(3), 573605.
  • Cox, A. M. G., and J. Obłój (2011b): Robust Hedging of Double Touch Barrier Options, SIAM J. Finan. Math. 2, 141182.
  • Cox, A. M. G., and J. Wang (2013): Root's Barrier: Construction, Optimality and Applications to Variance Options, Ann. Appl. Prob., 23(3), 859894.
  • Cousot, L. (2004): Necessary and Sufficient Conditions for No Static Arbitrage among European Calls, Courant Institute, New York University.
  • Cousot, L. (2007): Conditions on Option Prices for Absence of Arbitrage and Exact Calibration, J. Bank. Finance 31(11), 33773397.
  • Davis, M. H. A., and D. Hobson (2007): The Range of Traded Option Prices, Math. Finance 17(1), 114.
  • Davis, M. H. A., J. Obłój, and V. Raval (2014): Arbitrage Bounds for Prices of Weighted Variance Swaps, Math. Finance 24(4), 821854.
  • Deparis, S., and C. Martini (2004): Superhedging Strategies and Balayage in Discrete Time, in Seminar on Stochastic Analysis, Random Fields and Applications IV, Vol. 58 of Progr. Probab. Basel: Birkhäuser, pp. 205219.
  • Dolinsky, Y., and M. H. Soner (2012): Robust Hedging and Martingale Optimal Transport in Continuous Time, preprint, ArXiv e-prints to appear in Finance Stoch.
  • Dolinsky, Y., and M. H. Soner (2014): Robust Hedging under Proportional Transaction Costs, Probab Theory Relat. Fields 18(2), 327347.
  • Galichon, A., P. Henry-Labordère, and N. Touzi (2011): A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options, SSRN eLibrary.
  • Gilat, D. (1986): The best bound in the inline image inequality of Hardy and Littlewood and its martingale counterpart, Proc. Am. Math. Soc. 97(3), 429436.
  • Henry-Labordère, P., J. Obloj, P. Spoida, and N. Touzi (2012): Maximum Maximum of Martingales Given Marginals, preprint, arXiv:1203.6877.
  • Hobson, D. (1998): Robust Hedging of the Lookback Option, Finance Stoch. 2, 329347.
  • Hobson, D. (2011): The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices, in Paris-Princeton Lectures on Mathematical Finance 2010, Vol. 2003 of Lecture Notes in Math. Berlin: Springer, pp. 267318.
  • Hobson, D., and M. Klimmek (2012): Model Independent Hedging Strategies for Variance Swaps, Finance Stoch. 16(4), 611649.
  • Hobson, D., and A. Neuberger (2012): Robust Bounds for Forward Start Options, Math. Finance 22(1), 3156.
  • Hobson, D. and J. L. Pedersen (2002): The Minimum Maximum of a Continuous Martingale with Given Initial and Terminal Laws, Ann. Probab. 30(2), 978999.
  • Jacod, J. and A. N. Shiryaev (1998): Local Martingales and the Fundamental Asset Pricing Theorems in the Discrete-Time Case, Finance Stoch. 2(3), 259273.
  • Madan, D. B. and M. Yor (2002): Making Markov Martingales Meet Marginals: With Explicit Constructions, Bernoulli 8(4), 509536.
  • Nutz, M. (2013): Superreplication Under Model Uncertainty in Discrete Time, preprint, arXiv:1301.3227.
  • Obłój, J. (2004): The Skorokhod Embedding Problem and Its Offspring, Probab. Surv. 1, 321390.
  • Riedel, F. (2011): Finance Without Probabilistic Prior Assumptions, preprint, ArXiv e-prints.
  • Rogers, L. C. G. (1993): The Joint Law of the Maximum and Terminal Value of a Martingale, Probab. Theory Relat. Fields 95(4), 451466.
  • Schachermayer, W. (2010): The Fundamental Theorem of Asset Pricing, in Encyclopedia of Quantitative Finance, Vol. 2, R. Cont, ed., Chichester, UK: Wiley, pp. 792801.
  • Tan, X., and N. Touzi (2011): Optimal Transportation under Controlled Stochastic Dynamics, Ann. Probab., 41(5), 32013240.