SEARCH

SEARCH BY CITATION

References

  • Alexander C. M. O’D., Grossman J. N., Ebel D. S., and Ciesla F. J.2008. The formation conditions of chondrules and chondrites. Science320:16171619.
  • Amelin Y., Krot A. N., Hutcheon I. D., and Ulyanov A. A.2002. Lead isotopic ages of chondrules and calcium-aluminium-rich inclusions. Science297:16781683.
  • Amelin Y., Kaltenbach A., Iizuka T., Stirling C. H., Ireland T. R., Petaev M., and Jacobsen S. B.2010. U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters300:343350.
  • Asphaug E., Jutzi M., and Movshovitz M.2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters308:369379.
  • Baker J. A., Schiller M., and Bizzarro M.2012. 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early solar system?Geochimica et Cosmochimica Acta77:415431.
  • Binns R. A.1967. An exceptionally large chondrule in the Parnallee meteorite. Mineralogical Magazine36:319324.
  • Bland P. A. and Ciesla F. J. 2010. The impact of nebular evolution on volatile depletion trends observed in differentiated objects (abstract #1817). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Blichert-Toft J., Moynier F., Lee C.-T. A., Telouk P., and Albarède F.2010. The early formation of the IVA iron meteorite parent body. Earth and Planetary Science Letters296:469480.
  • Blinova A., Stern R., and Herd C. D. K.2011. In situ SIMS oxygen isotope measurements of zoned olivines in the Tagish Lake meteorite chondrules (abstract). Meteoritics & Planetary Science46:A22.
  • Boss A. P. and Durisen R. H. 2005. Sources of shock waves in the protoplanetary disk. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. Astronomical Society of the Pacific Conference Series 341. San Francisco: Astronomical Society of the Pacific. pp. 821838.
  • Bottke W. F., Nesvorny D., Grimm R. E., Morbidelli A., and O’Brien D. P.2006. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature439:821824.
  • Bridges J. C. and Hutchison R.1997. A survey of clasts and large chondrules in ordinary chondrites. Meteoritics & Planetary Science32:389394.
  • Burbine T. H., McCoy T. J., Meibom A., Gladman B., and Keil K. 2002. Meteoritic parent bodies: Their number and identification. In Asteroids III, edited by Bottke W. F., Paolicchi P., Binzel R. P., and Cellino A. Tucson, Arizona: The University of Arizona Press. pp. 653667.
  • Burkhardt C., Kleine T., Bourdon B., Palme H., Zipfel J., Friedrich J. M., and Ebel D. S.2008. Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals. Geochimica et Cosmochimica Acta72:61776197.
  • Burkhardt C., Kleine T., Dauphas N., and Wieler R.2012. Nucleosynthetic tungsten isotope anomalies in acid leachates of the Murchison chondrite: Implications for hafnium–tungsten chronometry. The Astrophysical Journal Letters753:L6.
  • Castillo-Rogez J., Johnson T. V., Lee M. H., Turner N. J., Matson D. L., and Lunine J.2009. 26Al decay: Heat production and a revised age for Iapetus. Icarus204:658662.
  • Chen J. H., Papanastassiou D. A., and Wasserburg G. J.1998. Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta62:33793392.
  • Clayton R. N. and Mayeda T. K.1996. Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta60:19992017.
  • Connelly J. N., Amelin Y., Krot A. N., and Bizzarro M.2008. Chronology of the solar system’s oldest solids. The Astrophysical Journal675:L121L124.
  • Connelly J. N., Bizzarro M., Ivanova M., and Krot A. N.2011. Towards a new absolute chronology for the early solar system. (abstract #9056). Workshop on Formation of the First Solids in the Solar System, November 7–9, 2011, Kauai, Hawaii. LPI Contribution No. 1639. Houston, Texas: Lunar and Planetary Institute.
  • Connolly H. C., Jr. and Hewins R. H.1995. Chondrules as products of dust collisions with totally molten droplets within a dust-rich nebular environment: An experimental investigation. Geochimica et Cosmochimica Acta59:32313246.
  • Desch S. J. and Connolly H. C., Jr.2002. A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science37:183207.
  • Desch S. J., Morris M. A., Connolly H. C., and Boss A. P.2010. Critical examination of the X-wind model for chondrule and calcium-rich, aluminum-rich inclusion formation and radionuclide production. The Astrophysical Journal725:692711.
  • Eisenhour D. D., Daulton T. L., and Buseck P. R.1994. Electromagnetic heating in the early solar nebula and the formation of chondrules. Science265:10671070.
  • Fedkin A. V. and Grossman L. 2006. The fayalite content of chondritic olivine: Obstacle to understanding the condensation of rocky material. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 279294.
  • Fedkin A. V. and Grossman L.2010. Condensation of the high-FeO silicates in primitive chondrites: Still a problem (abstract #1448). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Fedkin A. V., Grossman L., and Ciesla F. J. 2012a. Extreme conditions required for suppression of alkali evaporation during chondrule formation (abstract #2565). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Fedkin A. V., Grossman L., Ciesla F. J., and Simon S. B.2012b. Mineralogical and isotopic constraints on chondrule formation from shock wave thermal histories. Geochimica et Cosmochimica Acta87:81116.
  • Ghosh A. and McSween H. Y., Jr.1999. Temperature dependence of specific heat capacity and its effect on asteroid thermal models. Meteoritics & Planetary Science34:121127.
  • Goldstein J. I., Scott E. R. D., and Chabot N. L.2009. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde69:293325.
  • Goodrich C. A. and Delaney J. S.2000. Fe/Mg–Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies. Geochimica et Cosmochimica Acta64:149160.
  • Goodrich C. A. and Wilson L.2011. Oxygen isotope and siderophile element tests of ureilite petrogenesis models (abstract #1246). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Greenwood R. C., Franchi I. A., Gibson J. M., and Benedix G. K.2012. Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica et Cosmochimica Acta94:146163.
  • Grossman J. N. 1988. Origin of chondrules. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 680696.
  • Grossman L., Fedkin A. V., and Simon S. B. 2012. Formation of the first oxidized iron in the solar system. Meteoritics & Planetary Science, doi: 10.1111/j.1945-5100.2012.01353.x.
  • Halliday A. N. and Porcelli D.2001. In search of lost planets—The palaeocosmochemistry of the inner solar system. Earth and Planetary Science Letters192:545559.
  • Hans U., Kleine T., and Bourdon B. 2011. Strontium isotope anomalies in Ca-Al-rich inclusions and the Rb-Sr chronology of volatile depletion revisited (abstract #2672). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Hevey P. J. 2001. Thermal modelling of planetesimals heated by 26Al: Implications for chondrule formation. Ph.D. thesis, University of Dublin, Dublin, Ireland.
  • Hevey P. J. and Sanders I. S.2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science41:95106.
  • Hewins R. H. and Radomsky P. M.1990. Temperature conditions for chondrule formation. Meteoritics25:309318.
  • Hewins R. H., Zanda B., and Bendersky C.2012. Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochimica et Cosmochimica Acta78:117.
  • Hezel D. C. and Palme H.2010. The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters294:8593.
  • Hill H. G. M.1993. Three unusual chondrules in the Bovedy (L3) chondrite (abstract). Meteoritics28:363.
  • Holmén B. A. and Wood J. A. 1986. Chondrules that indent one another: Evidence for hot accretion (abstract)?Meteoritics21:399.
  • Hoppe P.2008. Reservoir for comet material: Circumstellar grains. Space Science Reviews138:4357.
  • Horan M. F., Smoliar M. I., and Walker R. J.1998. 182W and 187Re-187Os systematics of iron meteorites: Chronology for melting, differentiation, and crystallization of asteroids. Geochimica et Cosmochimica Acta62:545554.
  • Humayun M.2012. Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite. Meteoritics & Planetary Science47:11911208.
  • Hutcheon I. D. and Hutchison R.1989. Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets. Nature337:238241.
  • Hutchison R. 1996. Hot accretion of the ordinary chondrites: The rocks don’t lie (abstract). 27th Lunar and Planetary Science Conference. p. 579.
  • Hutchison R. and Bevan A. W. R. 1983. Conditions and time of chondrule accretion. In Chondrules and their origins, edited by King E. A. Houston, Texas: Lunar and Planetary Institute. pp. 162179.
  • Hutchison R., Williams C. T., Din V. K., Clayton R. N., Kirschbaum C., and Paul R. L.1988. A planetary, H-group pebble in the Barwell, L6, unshocked chondritic meteorite. Earth and Planetary Science Letters90:105118.
  • Jacobsen B., Yin Q.-Z., Moynier F., Amelin Y., Krot A. N., Nagashima K., Hutcheon I. D., and Palme H.2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters272:353364.
  • Johansen A., Oishi J. S., Low M-M. M., Klahr H., Henning T., and Youdin A.2007. Rapid planetesimal formation in turbulent circumstellar disks. Nature488:10221025.
  • Jones R. H.2012. Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics & Planetary Science47:11761190.
  • Jones R. H. and Carey E. R.2006. Identification of relict forsterite grains in forsterite-rich chondrules from the Mokoia CV3 carbonaceous chondrite. American Mineralogist81:16641674.
  • Jones R. H., Saxton J. M., Lyon I. C., and Turner G.2000. Oxygen isotopes in chondrule olivine and isolated olivine grains. Meteoritics & Planetary Science35:849857.
  • Jones R. H., Grossman J. N., and Rubin A. E. 2005. Chemical, mineralogical and isotopic properties of chondrules: Clues to their origins. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. Astronomical Society of the Pacific Conference Series 341. San Francisco: Astronomical Society of the Pacific. pp. 251285.
  • Keil K., Ntaflos Th., Taylor G. J., Brearley A. J., Newsom H. E., and Romig A. G.1989. The Shallowater aubrite: Evidence for origin by planetesimal impacts. Geochimica et Cosmochimica Acta53:32913307.
  • Kennedy A. K., Hutchison R., Hutcheon I. D., and Agrell S. O.1992. A unique high Mn/Fe microgabbro in the Parnallee (LL3) ordinary chondrite: Nebular mixture or planetary differentiate from a previously unrecognized planetary body?Earth and Planetary Science Letters113:191205.
  • King E. A., ed. 1983. Reduction, partial evaporation, and spattering—Possible chemical and physical processes in fluid drop chondrule formation. In Chondrules and their origins. Houston, Texas: Lunar and Planetary Institute. pp. 180187.
  • Kita N. T. and Ushikubo T.2012. Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteoritics & Planetary Science47:11081119.
  • Kita N. T., Tomomura S., Nagahara H., Tachibana S., and Morishita Y.2005. Correlation between aluminum-26 ages and bulk Si/Mg ratios for chondrules from LL3.0-3.1 chondrites (abstract #1750). 36th Lunar and Planetary Science Conference. CD-ROM.
  • Kleine T., Mezger K., Palme H., Scherer E., and Münker C.2005. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochimica et Cosmochimica Acta69:58055818.
  • Kleine T., Touboul M., van Orman J. A., Bourdon B., Maden C, Mezger K., and Halliday A. N.2008. Hf–W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth and Planetary Science Letters270:106118.
  • Kleine T., Hans U., Irving A. J., and Bourdon B.2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta84:186203.
  • Krot A. N., Keil K., Goodrich C. A., Scott E. R. D., and Weisberg M. K. 2003. Classification of meteorites. In Meteorites, comets and planets, edited by Davis A. M.Treatise on Geochemistry, vol. 1, edited by Holland H. D. and Turekian K. K. Oxford: Elsevier. pp. 83128.
  • Krot A. N., Amelin Y., Cassen P., and Meibom A.2005. Young chondrules in CB chondrites from a giant impact in the early solar system. Nature436:989992.
  • Kruijer T., Sprung P., Kleine T., Leya I., and Wieler R. 2011. The timing of core formation in protoplanets revisited: New evidence from a combined tungsten—Noble gas isotope study on magmatic iron meteorites (abstract #1712). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Kurat G. and Kracher A.1980. Basalts in the Lancé carbonaceous chondrite. Zeitschrift für Naturforschung35a:180190.
  • Kyte F. T., Omura C., and Gersonde R.2010. Accretionary growth of impact spherules (abstract #5376). Meteoritics & Planetary Science45:A113.
  • Larsen K. K., Trinquier A., Paton C., Schiller M., Wieland D., Ivanova M. A., Connelly J. N., Nordlund Å., Krot A. N., and Bizzarro M.2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. The Astrophysical Journal735:L37L43.
  • LaTourrette T. and Wasserburg G. J.1998. Mg diffusion in anorthite: Implications for the formation of early solar system planetesimals. Earth and Planetary Science Letters158:91108.
  • Lauretta D. S. and McSween H. Y.2006. Meteorites and the early solar system II. Tucson, Arizona: The University of Arizona Press.
  • Lee T., Papanastassiou D. A., and Wasserburg G. J.1977. Aluminium-26 in the early solar system: Fossil or fuel?The Astrophysical Journal211:L107L110.
  • Lehner S. W., Petaev M. I., and Buseck P. R. 2011. Evidence for silicate sulfidation in EH3 metal-sulfide nodules (abstract #9079). Workshop on Formation of the First Solids in the Solar System, November 7–9, 2011, Kauai, Hawaii. LPI Contribution No. 1639. Houston, Texas: Lunar and Planetary Institute.
  • Libourel G. and Chaussidon M.2011. Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters301:921.
  • Libourel G. and Krot A. N.2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth and Planetary Science Letters254:18.
  • Liffman K. and Brown M. J. I. 1996. The protostellar jet model of chondrule formation. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 285302.
  • Lodders K. and Fegley B. 1998. The planetary scientists companion. New York: Oxford University Press. 400 p.
  • Lodders K. and Palme H.2009. Solar system elemental abundances in 2009 (abstract). Meteoritics & Planetary Science44:A124.
  • Lofgren G.1989. Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural. Geochimica et Cosmochimica Acta53:461470.
  • Love S. G., Keil K., and Scott E. R. D.1995. Electrical discharge heating of chondrules in the solar nebula. Icarus115:97108.
  • Lugmair G. W. and Shukolyukov A.2001. Early solar system events and timescales. Meteoritics & Planetary Science36:10171026.
  • MacPherson G. J., Bullock E. S., Janney P. E., Kita N. T., Ushikubo T., Davis A. M., Wadhwa M., and Krot A. N.2010. Early solar nebula condensates with canonical, not supracanonical, initial 26Al/27Al ratios. The Astrophysical Journal Letters711:L117L121.
  • Markowski A., Quitté G., Halliday A. N., and Kleine T.2006a. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects. Earth and Planetary Science Letters242:115.
  • Markowski A., Leya I., Quitté G., Ammon K., Halliday A. N., and Wieler R.2006b. Correlated helium-3 and tungsten isotopes in iron meteorites: Quantitative cosmogenic corrections and planetesimal formation times. Earth and Planetary Science Letters250:104115.
  • McBreen B. and Hanlon L.1999. Gamma ray bursts and the origin of chondrules and planets. Astronomy & Astrophysics351:759765.
  • McCanta M. C., Beckett J. R., and Stolper E. M. 2009. Phosphorus zonation in H chondrite olivines: The effects of increasing petrologic grade (abstract #2048). 40th Lunar and Planetary Science Conference. CD-ROM.
  • McCoy T. J., Keil K., Muenow D. W., and Wilson L.1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta61:639650.
  • Meibom A. and Clark B. E.1999. Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteoritics & Planetary Science34:724.
  • Metzler K.2011a. Ultrarapid chondrite formation by hot chondrule accretion? Evidence from UOCs (abstract). Meteoritics & Planetary Science46:A159.
  • Metzler K.2011b. Chondrite accretion within hours to a few days after chondrule formation? Textural evidence from UOC's (abstract #9111). Workshop on Formation of the First Solids in the Solar System, November 7–9, 2011, Kauai, Hawaii. LPI Contribution No. 1639. Houston, Texas: Lunar and Planetary Institute.
  • Metzler K. 2012. Ultra-rapid chondrite formation by hot chondrule accretion? Evidence from unequilibrated ordinary chondrites. Meteoritics & Planetary Science47. This issue.
  • Morris M. A. and Desch S. J.2010. Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal722:14741494.
  • Morris M. A., Boley A. C., Desch S. J., and Athanassiadou T.2012. Chondrule formation in bow shocks around eccentric planetary embryos. The Astrophysical Journal752:27.
  • Moskovitz N. and Gaidos E.2011. Differentiation of planetesimals and the thermal consequences of melt migration. Meteoritics & Planetary Science46:903918.
  • Mostefaoui S., Kita N. T., Tachibana S., Togashi S., Nagahara H., and Morishita Y.2002. The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum-26/aluminum-27 ratios. Meteoritics & Planetary Science37:421438.
  • Moynier F., Day M. D., Okui W., Yokoyama T., Bouvier A., Walker R. J., and Podoseck F. 2012. Planetary scale Sr isotopic heterogeneity (abstract #5180). Meteoritics & Planetary Science47. This issue.
  • Nagahara H.1981. Evidence for secondary origin of chondrules. Nature292:135136.
  • Nettles J. W., Lofgren G. L., and McSween H. Y. 2001. Partially melted aggregate chondrules in LEW 86134: Preliminary analysis of textural and chemical trends (abstract #1651). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Palme H., Hezel D. C., and Klerner-Pack S. 2011. Element fractionation between chondrules and matrix: Clues for chondrule formation (abstract #1978). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Petaev M. I., Lehner S. W., and Buseck P. R. 2012. Chemical fractionation during processing of silicates in S-rich systems: Implications for the origin of enstatite chondrites (abstract #2229). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Prinz M., Weisberg M. K., and Nehru C. E.1988. Gunlock, a new Type 3 ordinary chondrite with a golfball-sized chondrule (abstract). Meteoritics23:297.
  • Qin L., Dauphas N., Wadhwa M., Masarik J., and Janney P. E.2008. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth and Planetary Science Letters273:94104.
  • Radomsky P. M. and Hewins R. H.1990. Formation conditions of pyroxene-olivine and magnesian olivine chondrules. Geochimica et Cosmochimica Acta54:34753490.
  • Rambaldi E. R.1981. Relict grains in chondrules. Nature293:558561.
  • Rubin A. E.1983. The Adhi Kot breccia and implications for the origin of chondrules and silica-rich clasts in enstatite chondrites. Earth and Planetary Science Letters64:201212.
  • Rubin A. E.2000. Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Science Reviews50:327.
  • Rubin A. E.2010. Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta74:48074828.
  • Rubin A. E.2011. Origin of the differences in refractory-lithophile-element abundances among chondrite groups. Icarus213:547558.
  • Rubin A. E. and Krot A. N. 1996. Chondrule remelting: Evidence from coarse grained chondrule rims and compound chondrules. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge: Cambridge University Press. pp. 173180.
  • Rubin A. E., Kallemeyn G. W., Wasson J. T., Clayton R. N., Mayeda T. K., Grady M., Verchovsky A. B., Eugster O., and Lorenzetti S.2003. Formation of metal and silicate globules in Gujba: A new Bencubbin-like meteorite fall. Geochimica et Cosmochimica Acta67:32833298.
  • Rugel G., Faestermann T., Knie K., Korschinek G., Poutivtsev M., Schumann D., Kivel N., Gunther-Leopold I., Weinreich R., and Wohlmuther M.2009. New measurement of the 60Fe half-life. Physical Review Letters103:072502.
  • Ruzicka A., Kring D. A., Hill D. H., Boynton W. V., Clayton R. N., and Mayeda T. K.1995. Silica-rich orthopyroxenite in the Bovedy chondrite. Meteoritics30:5770.
  • Ruzicka A., Snyder G. A., and Taylor L. A.1998. Mega-chondrules and large, igneous-textured clasts in Julesberg (L3) and other ordinary chondrites: Vapor-fractionation, shock-melting, and chondrule formation. Geochimica et Cosmochimica Acta62:14191442.
  • Ruzicka A., Snyder G. A., and Taylor L. A.2000. Crystal-bearing lunar spherules: Impact melting of the Moon’s crust and implications for the origin of meteoritic spherules. Meteoritics & Planetary Science35:173192.
  • Ruzicka A., Floss C., and Hutson M.2012a. Agglomeratic olivine (AO) objects and Type II chondrules in ordinary chondrites: Accretion and melting of dust to form ferroan chondrules. Geochimica et Cosmochimica Acta76:103124.
  • Ruzicka A., Hutson M., Floss C., and Hibrand A. 2012b. Large silica-rich igneous-textured inclusions in the Buzzard Coulee (H4) chondrite (abstract #1630). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Sakamoto N., Seto Y., Itoh S., Kuramoto K., Fujino K., Nagashima K., Krot A. N., and Yurimoto H.2007. Remnants of the early solar system water enriched in heavy oxygen isotopes. Science317:231233.
  • Sanders I. S. 1996. A chondrule-forming scenario involving molten planetesimals. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 327334.
  • Sanders I. S. and Hill H. G. M.1994. Multistage compound chondrules and molded chondrules in the Bovedy (L3) meteorite (abstract). Meteoritics29:527528.
  • Sanders I. S. and Taylor G. J.2005. Implications of 26Al in nebular dust: Formation of chondrules by disruption of molten planetesimals. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D. and Reipurth B. Astronomical Society of the Pacific Conference Series 341. San Francisco: Astronomical Society of the Pacific. pp. 821838.
  • Scherstén A., Elliott T., Hawkesworth C., Russell S., and Masarik J.2006. Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters241:530542.
  • Schiller M., Baker J., Creech J., Paton C., Millet M.-A., Irving A., and Bizzarro M.2011. Rapid timescales for magma ocean crystallization on the Howardite-Eucrite–Diogenite parent body. The Astrophysical Journal Letters740:L22.
  • Schölling M. and Breuer D. 2009. Numerical simulation of convection in a partially molten planetesimal. European Planetary Science Congress Abstracts4: EPSC2009523.
  • Schrader D. L., Connolly H. C., Lauretta D. S., Nagashima K., and Huss G. R.2011. Relationship between FeO content and Δ17O in chondrules from CR chondrites: Linking oxygen fugacity and O-isotope evolution (abstract #5343). Meteoritics & Planetary Science Supplement46:A208.
  • Scott E. R. D.2007. Chondrites and the protoplanetary disk. Annual Reviews of Earth and Planetary Sciences35:577620.
  • Scott E. R. D. and Krot A. N. 2007. Chondrites and their components. In Meteorites, comets and planets, edited by Davis A. M. Chapter 1.07, Treatise on Geochemistry Update 1. Elsevier. Available at online at http://www.sciencedirect.com/science/referenceworks/9780080437514
  • Scott E. R. D. and Sanders I. S.2009. Implications of the carbonaceous chondrite Mn–Cr isochron for the formation of early refractory planetesimals and chondrules. Geochimica et Cosmochimica Acta73:51375149.
  • Scott E. R. D., Keil K., and Stoeffler D.1992. Shock metamorphism of carbonaceous chondrites. Geochimica et Cosmochimica Acta56:42814293.
  • Shore M. and Fowler A. D.1996. Oscillatory zoning in minerals: A common phenomena. Canadian Mineralogist34:11161126.
  • Shu F. H., Shang H., Glassgold A. E., and Lee T.1997. X-rays and fluctuating X-winds from protostars. Science277:14751479.
  • Shu F. H., Shang H., Gounelle M., Glassgold A. E., and Lee T.2001. The origin of chondrules and refractory inclusions in chondritic meteorites. The Astrophysical Journal548:10291050.
  • Sneyd D. S., McSween H. Y., Jr., Sugiura N., Strangway D. W., and Nord G. L., Jr. 1988. Origin of petrofabrics and magnetic anisotropy in ordinary chondrites. Meteoritics23:139149.
  • Sokol A. K., Bischoff A., Marhas K. K., Mezger K., and Zinner E.2007. Late accretion and lithification of chondritic parent bodies: Mg isotope studies on fragments from primitive chondrites and chondritic breccias. Meteoritics & Planetary Science42:12911308.
  • Steele I. M.1989. Compositions of isolated forsterites in Ornans (C3O). Geochimica et Cosmochimica Acta53:20692079.
  • Steele I. M.1995. Oscillatory zoning in meteoritic forsterite. American Mineralogist80:823832.
  • Symes S. J. K., Sears D. W. G., Taunton A., Akridge D. G., Huang S., and Benoit P. H.1998. The crystalline lunar spherules: Their formation and implications for the origin of meteoritic chondrules. Meteoritics & Planetary Science33:1329.
  • Tachibana S., Nagahara H., Mostefaoui S., and Kita N. T.2003. Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites. Meteoritics & Planetary Science38:939962.
  • Taylor G. J., Scott E. R. D., and Keil K. 1983. Cosmic setting for chondrule formation. In Chondrules and their origins, edited by King E. A. Houston, Texas: Lunar and Planetary Institute. pp 262278.
  • Taylor G. J., Keil K., McCoy T, Haack H., and Scott E. R. D.1993. Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics28:3452.
  • Telus M., Huss G. R., Tachibana S., and Goswami J. 2011. The initial abundance of 60Fe in the inner solar system: Evidence from chondrules (abstract #9127). Workshop on Formation of the First Solids in the Solar System, November 7–9, 2011, Kauai, Hawaii. LPI Contribution No. 1639. Houston, Texas: Lunar and Planetary Institute.
  • Telus M., Huss G. R., Nagashima K., Ogliore R. C., and Tachibana S. 2012. Reevaluating our understanding of the 60Fe-60Ni system in chondrites (abstract #2733). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Tenner T. J., Ushikubo T., and Kurahashi E. 2011. Oxygen isotopic measurements of phenocrysts in chondrules from the primitive carbonaceous chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs (abstract #1426). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Tenner T. J., Nakashima D., Ushikubo T., Kita N. T., and Weisberg M. K. 2012. Oxygen isotopes of chondrules in the Queen Alexandra Range 99177 CR3 chondrite: Further evidence for systematic relationships between chondrule mg# and Δ17O and the role of ice during chondrule formation (abstract #2127). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Thrane K., Bizzarro M., and Baker J. A.2006. Extremely brief formation interval for refractory inclusions and uniform distribution of 26Al in the early solar system. The Astrophysical Journal646:L159L162.
  • Ushikubo T., Kimura M., Kita N. T., and Valley J. W.2012. Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochimica et Cosmochimica Acta90:242264.
  • Villeneuve J., Chaussidon M., and Libourel G.2009. Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science235:985988.
  • Villeneuve J., Chaussidon M., and Libourel G.2011. Magnesium isotopes constraints on the origin of Mg-rich olivines from the Allende chondrite: Nebular versus planetary?Earth and Planetary Science Letters301:107116.
  • Walsh K. J., Morbidelli A., Raymond S. N., O’Brien D. P., and Mandell A. M.2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature475:206209.
  • Wänke H., Dreibus G., Jagoutz E., Palme H., and Rammensee W.1981. Chemistry of the Earth and the significance of primary and secondary objects for the formation of planets and meteorite parent bodies (abstract). 12th Lunar and Planetary Science Conference. p. 1139.
  • Wänke H., Dreibus G., and Jagoutz E.1984. Mantle chemistry and accretion history of the Earth. In Archaean geochemistry, edited by Kröner A, Hanson G. N., and Goodwin A. M. Berlin: Springer Verlag. pp. 124.
  • Warren P. H.2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters311:93100.
  • Wasserburg G. J., Wimpenny J., and Yin Q.-Z.2011. Mg isotopic heterogeneity, Al-Mg isochrons, and canonical 26Al/27Al in the early solar system (abstract #9038). Workshop on the first solar system solids, November 7–9 2011, Kauai, Hawaii. LPI Contribution No. 1639. Houston, Texas: Lunar and Planetary Institute.
  • Wasson J. T.1993. Constraints on chondrule origins. Meteoritics28:1428.
  • Wasson J. T. and Rubin A. E.2010. Metal in CR chondrites. Geochimica et Cosmochimica Acta74:22122230.
  • Weinbruch S., Palme H., and Spettel B.2000. Refractory forsterite in primitive meteorites: Condensates from the solar nebula?Meteoritics & Planetary Science35:161171.
  • Whattam S. A., Hewins R. H., Cohen B. A., Seaton N. C., and Prior D. J.2008. Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condensates?Earth and Planetary Science Letters269:200211.
  • Wilson L. and Goodrich C. A.2012. Melt formation, migration and rapid extraction from differentiated asteroid interiors: Lessons from ureilites extended to all asteroids (abstract #1659). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Wood J. A.1963. On the origin of chondrules and chondrites. Icarus2:152180.
  • Wood J. A.1988. Chondritic meteorites and the solar nebula. Annual Reviews of Earth and Planetary Sciences16:5372.
  • Wood J. A.2000. The beginning: Swift and violent. Space Science Reviews92:97112.
  • Yang J., Goldstein J. I., and Scott E. R. D.2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature446:888891.
  • Zanda B.2004. Chondrules. Earth and Planetary Science Letters224:117.
  • Zook H. A.1980. A new impact model for the generation of ordinary chondrites (abstract). Meteoritics15:390391.
  • Zook H. A. 1981. On a new model for the generation of chondrules (abstract). 12th Lunar and Planetary Science Conference. p. 1242.