SEARCH

SEARCH BY CITATION

References

  • Albarède F. 2002. Introduction to geochemical modeling. Cambridge, UK: Cambridge University Press.
  • Alexander C. M. O’D.1994. Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors. Geochimica et Cosmochimica Acta58:34513467.
  • Alexander C. M. O’D.2005. Re-examining the role of chondrules in producing the elemental fractionations in chondrites. Meteoritics & Planetary Science40:943965.
  • Alexander C. M. O’D., Yu Y., Wang J., and Hewins R. 1998. Experimental determination of distribution coefficients as a function of cooling rate revisited (abstract #1775). 29th Lunar and Planetary Science Conference. CD-ROM.
  • Alexander C. M. O’D., Grossman J. N., Ebel D. S., and Ciesla F. J.2008. The formation conditions of chondrules and chondrites. Science320:16171619.
  • Apai D., Connolly H. C., Jr., and Lauretta D. S. 2010. Thermal processing in protoplanetary nebulae. In Protoplanetary dust: Astrochemical and cosmochemical perspectives. Cambridge, UK: Cambridge University Press. pp. 230262.
  • Asphaug E., Jutzi M., and Movshovitz N.2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters308:369379.
  • Bédard J. H.2005. Partitioning coefficients between olivine and silicate melts. Lithos83:394419.
  • Blander M., Pelton A. D., Jung I.-H., and Weber R.2004. Non-equilibrium concepts lead to a unified explanation of the formation of chondrules and chondrites. Meteoritics & Planetary Science39:18971910.
  • Brearley A. and Jones R. H.1998. Chondritic meteorites. In Planetary materials, edited by Papike J. J. Reviews in Mineralogy, vol. 36. Reston, VA: Mineralogical Society of America. pp. 3-13-398.
  • Brunet F. and Chazot G.2001. Partitioning of phosphorus between olivine, clinopyroxene and silicate glass in a spinel lherzolite xenolith. Chemical Geology117:5771.
  • Chakraborty S. 2010. Diffusion coefficients in olivine, wadsleyite and ringwoodite. In Diffusion in minerals and melts, edited by Zhang Y. and Cherniak D. Reston, VA: Mineralogical Society of America. pp. 603609.
  • Ciesla F. J. 2005. Chondrule-forming processes—An overview. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco, CA: Astronomical Society of the Pacific Conference Series. pp. 811820.
  • Connolly H. C., Jr. and Desch S. J.2004. On the origin of the “kleine Kugelchen” called chondrules. Chemie der Erde/Geochemistry64:95125.
  • Cuzzi J. N. and Alexander C. M. O’D.2006. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature441:483485.
  • Davis A. M., Alexander C. M. O’D., Nagahara H., and Richter F. M. 2005. Evaporation and condensation during CAI and chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco, CA: Astronomical Society of the Pacific. pp. 432455.
  • Desch S. J., Ciesla F. J., Hood L. L., and Nakamoto T.2005. Heating of chondritic materials in solar nebula shocks. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D. and Reipurth B. San Francisco, CA: Astronomical Society of the Pacific. pp. 849872.
  • Dodson M. H.1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology40:259274.
  • Floss C., Crozaz G., McKay G., Mikouchi T., and Killgore M.2003. Petrogenesis of angrites. Geochimica et Cosmochimica Acta67:47754789.
  • Gordon S. H.2009. The composition of primitive meteorites. Ph.D. thesis, Imperial College, London, UK.
  • Griffin W. L., Powell W. J., Pearson N. J., and O’Reilly S. Y.2008. Glitter: Data reduction software for laser ablation ICP-MS. Short Course Series40:308311.
  • Grossman J. N. and Brearley A. J.2005. The onset of metarmorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science40:87122.
  • Guan Y. and Crozaz G.2000. LREE-enrichments in ureilites: A detailed ion microprobe study. Meteoritics & Planetary Science35:131144.
  • Hart S. R. and Dunn T.1993. Experimental cpx/melt partitioning of 24 elements. Contributions to Mineralogy and Petrology113:18.
  • Hewins R. H. and Fox G. E.2004. Chondrule textures and precursor grain size: An experimental study. Geochimica et Cosmochimica Acta68:917926.
  • Hewins R. H., Yu Y., Zanda B., and Bourot-Denise M.1997. Do nebular fractionations, evaporative losses, or both, influence chondrule compositions?Antarctic Meteorite Research10:275298.
  • Hewins R. H., Connolly H. C., Jr., Lofgren G. E., and Libourel G. 2005. Experimental constraints on chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: Astronomical Society of the Pacific Conference Series. pp. 286316.
  • Hezel D. C. and Kiesswetter R.2010. Quantifying the error of 2D bulk chondrule analyses using a computer model to simulate chondrules (SIMCHON). Meteoritics & Planetary Science45:555571.
  • Hezel D. C. and Palme H.2007. The conditions of chondrule formation, Part I: Closed system. Geochimica et Cosmochimica Acta71:40924107.
  • Hezel D. C. and Palme H.2008. Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters265:716725.
  • Hezel D. C. and Palme H.2010. The chemical relationship between chondrules and matrix and the chondrule-matrix complementarity. Earth and Planetary Science Letters294:8593.
  • Hezel D. C., Palme H., Brenker F. E., and Nasdala L.2003. Evidence for fractional condensation and reprocessing at high temperatures in CH-chondrites. Meteoritics & Planetary Science38:11991216.
  • Hiraga T. and Kohlstedt D. L.2009. Systematic distribution of incompataible elements in mantle peridotite importance of intra- and inter-granular melt-like components. Contributions to Mineralogy and Petrology158:149167.
  • Huang S., Lu J., Prinz M., Weisberg M. K., Benoit P. H., and Sears D. W. G.1996. Chondrules: Their diversity and the role of open-system processes during their formation. Icarus122:316346.
  • Humayun M. 2012. Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite. Meteoritics & Planetary Science47:11911208.
  • Inoue M., Nakamura N., and Kimura M.2009. Tetrad effects in REE abundance patterns of chondrules from CM meteorites: Implications for aqueous alteration on the CM parent asteroid. Geochimica et Cosmochimica Acta73:52245239.
  • Jones R. H.1990. Petrology and mineralogy of Type II, FeO-rich chondrules in Semarkona (LL3.0)—Origin by closed-system fractional crystallization, with evidence for supercooling. Geochimica et Cosmochimica Acta54:17851802.
  • Jones R. H. 1996. Relict grains in chondrules: Evidence for chondrule recycling. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 163172.
  • Jones R. H. and Layne G. D.1997. Minor and trace element partitioning between pyroxene and melt in rapidly cooled chondrules. American Mineralogist82:534545.
  • Jones R. H. and Scott E. R. D.1989. Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. Proceedings, 19th Lunar and Planetary Science Conference. pp. 523536.
  • Jones R. H., Lee T., Connolly H. C., Jr., Love S. G., and Shang H.2000. Formation of chondrules and CAIs: Theory vs. observation. In Protostars and planets IV, edited by Mannings V., Boss A. P., and Russell S. S. Tucson, Arizona: The University of Arizona Press. pp. 927962.
  • Jones R. H., Shearer C. K., and Shilk A. J. 2010. Trace element distribution in an aluminium-rich chondrule from the Mokoia CV3 chondrite. (abstract #1338). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Kallemeyn G. W., Rubin A. E., and Wasson J. T.1996. The compositional classification of chondrites: VII. The R chondrite group. Geochimica et Cosmochimica Acta60:22432256.
  • Kennedy A. K., Lofgren G. E., and Wasserburg G. J.1993. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules—Equilibrium values and kinetic effects. Earth and Planetary Science Letters115:177195.
  • Krot A. N., Amelin Y., Bland P., Ciesla F. J., Connelly J., Davis A. M., Huss G. R., Hutcheon I. D., Makide K., Nagashima K., Nyquist L. E., Russell S. S., Scott E. R. D., Thrane K., Yurimoto H., and Yin Q.-Z.2009. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta73:49634997.
  • Kurat G., Brandstätter F., Zinner E., Palme H., and Spettel B1992. A SIMS study of some allende chondrules: Support for the new chondrule model (abstract). 23rd Lunar and Planetary Science Conference. p. 745.
  • Libourel G. and Krot A. N.2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth and Planetary Science Letters254:18.
  • Libourel G., Krot A. N., and Tissandier L.2006. Role of gas-melt interaction during chondrule formation. Earth and Planetary Science Letters251:232240.
  • Lin Y., Guan Y., Wang D., Kimura M., and Leshin L. A.2005. Petrogenesis of the new lherzolitic shergottite Grove Mountains 99027: Constraints of petrography, mineral chemistry, and rare earth elements. Meteoritics & Planetary Science40:15991619.
  • Lodders K.2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal591:12201247.
  • Lofgren G. E. 1996. A dynamic crystallization model for chondrule melts. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 187196.
  • Longerich H. P., Günther D., and Jackson S. E.1996. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius’ Journal of Analytical Chemistry355:538542.
  • McCoy T. J., Keil K., Clayton R. N., Mayeda T. K., Bogard D. D., Garrison D. H., Huss G. R., Hutcheon I. D., and Wieler R.1996. A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochimica et Cosmochimica Acta60:26812708.
  • Mikouchi T. and Miyamoto M. 2002. Comparative cooling rates of nakhlites as inferred from iron-magnesium and calcium zoning of olivines (abstract #1343). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Minowa H. and Ebihara M. 2002. Rare earth elements in pallasite olivines (abstract #1386). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Misawa K. and Nakamura N.1988. Demonstration of REE fractionation among individual chondrules from the Allende (CV3) chondrite. Geochimica et Cosmochimica Acta52:16991710.
  • Mittlefehldt D. W. J., McCoy T., Goodrich C. A., and Kracher A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary materials, edited by Papike J. J. Washington, D.C.: Mineralogical Society of America. pp. 1195.
  • Morris M. A. and Desch S. J.2010. Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal722:14741494.
  • Pack A., Shelley J. M. G., and Palme H.2004. Chondrules with peculiar REE patterns: Implications for solar nebular condensation at high C/O. Science303:9971000.
  • Pack A., Palme H., and Shelley J. M. G.2005. Origin of chondritic forsterite grains. Geochimica et Cosmochimica Acta69:31593182.
  • Pack A., Russell S. S., Shelley J. M. G., and van Zuilen M.2007. Geo- and cosmochemistry of the twin elements yttrium and holmium. Geochimica et Cosmochimica Acta71:45924608.
  • Pearce N. J. G., Perkins W. T., Westgate J. A., Gorton M. P., Jackson S. E., Neal C. R., and Chenery S. P.1997. A compilation of new and published major and trace element data for NIST SRL 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter21:115144.
  • Rubin A. E. and Krot A. N.1996. Multiple heating of chondrules. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 173180.
  • Rubin A. E. and Swindle T. D.2011. Flattened chondrules in the LAP 04581 LL5 chondrite: Evidence for an oblique impact into LL3 material and subsequent collisional heating. Meteoritics & Planetary Science46:587600.
  • Rubin A. E. and Wasson J. T.1987. Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite—Origin, interrelationships, and possible precursor components. Geochimica et Cosmochimica Acta51:19231937.
  • Ruzicka A., Floss C., and Hutson M.2008. Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials. Geochimica et Cosmochimica Acta72:55305557.
  • Sears D. W. G., Huang S., and Benoit P. H. 1996. Open-system behaviour during chondrule formation. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 221231.
  • Soulié C., Libourel G., Tissandier L., and Hiver J.-M.2012. Kinetics of olivine dissolution in chondrule melts: An experimental study (abstract #1840). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Stolper E. and Paque J. M.1986. Crystallization sequences of Ca-Al-rich inclusions from Allende: The effects of cooling rate and maximum temperature. Geochimica et Cosmochimica Acta50:17851806.
  • Tissandier L., Libourel G., and Robert F.2002. Gas-melt interaction and their bearing on chondrule formation. Meteoritics & Planetary Science37:13771389.
  • Tschermak G. 1885. Die mikroskopische Beschaffenheit der Meteoriten, erlaütert durch photographische Abbildungen. Stuttgart: Schweitzerbart, E.
  • Usui T., Sanborn M., Wadhwa M., and McSween H. Y., Jr. 2010. Petrology and trace element geochemistry of Robert Massif 04261 and 04262 meteorites, the first examples of geochemically enriched lherzolitic shergottites. Geochimica et Cosmochimica Acta74:72837306.
  • Varela M. E., Kurat G., and Zinner E.2006. The primary liquid condensation model and the origin of barred olivine chondrules. Icarus184:344364.
  • Wadhwa M. and Crozaz G.1995. Trace and minor elements in minerals of nakhlites and Chassigny: Clues to their petrogenesis. Geochimica et Cosmochimica Acta59:36293645.
  • Wadhwa M., Zipfel J., and Davis A. M. 1998. Constraints on the formation history of brachinites from rare-earth-element distributions (abstract #A161). 61st Meteoritical Society Meeting. CD-ROM.
  • Watson E. B.1996. Surface enrichment and trace element uptake during crystal growth. Geochimica et Cosmochimica Acta60:50135020.
  • Weinbruch S. and Müller W. F.1995. Constraints on the cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase. Geochimica et Cosmochimica Acta59:32213230.
  • Weinbruch S., Palme H., and Spettel B.2000. Refractory forsterite in primitive meteorites: Condensates from the solar nebula?Meteoritics & Planetary Science35:161171.
  • Whattam S. A. and Hewins R. H.2009. Granoblastic olivine aggregates as precursors of Type I chondrules: An experimental test. Geochimica et Cosmochimica Acta73:54605482.
  • Whattam S. A., Hewins R. H., Cohen B. A., Seaton N. C., and Prior D. J.2008. Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condensates?Earth and Planetary Science Letters269:200211.
  • Wick M. J., Jones R. H., Morris M., and Desch S. J.2010. Formation conditions of type I chondrules: Comparison of experimentally determined cooling rates with the shock wave model for chondrule formation (abstract #5278). 73rd Meteoritical Society Meeting. CD-ROM.
  • Wood B. J. and Blundy J. D. 2003. Trace element partitioning under crustal and uppermost mantle conditions: The influences of ionic radius, cation charge, pressure, and temperature. In Meteorites, comets, and planets, edited by Holland H. D., Turekian K. K. Treatise on Geochemistry, vol. 2. Oxford, UK: Elsevier. pp. 395424.
  • Zanda B., Bourot-Denise M., Perron C., and Hewins R. H.1994. Origin and metamorphic distribution of silicon, chromium, and phosphorus in the metal of chondrites. Science265:18461849.
  • Zanda B., Hewins R. H., Bourot-Denise M., Bland P. A., and Albarède F.2006. Formation of solar nebula reservoirs by mixing chondritic components. Earth and Planetary Science Letters248:650660.
  • Zhang A.-C., Hsu W.-B., Floss C., Li X.-H., Li Q.-L., Liu Y., and Taylor L. A.2010a. Petrogenesis of lunar meteorite Northwest Africa 2977: Constraints from in situ microprobe results. Meteoritics & Planetary Science45:19291947.
  • Zhang Y., Huaiwei N., and Chen Y. 2010b. Diffusion data in silicate melts. In Diffusion in minerals and melts. edited by Zhang Y. and Cherniak D. Chantilly, Virginia: Mineralogical Society of America. pp. 311408.