Ultrarapid chondrite formation by hot chondrule accretion? Evidence from unequilibrated ordinary chondrites


E-mail: knut.metzler@uni-muenster.de


Abstract– Unequilibrated ordinary chondrites (UOCs) of all groups (H, L, LL) contain unique chondrite clasts, which are characterized by a close-fit texture of deformed and indented chondrules. These clasts, termed “cluster chondrites,” occur in 41% of the investigated samples with modal abundances between 5 and 90 vol% and size variations between <1 mm and 10 cm. They show the highest chondrule abundances compared with all chondrite classes (82–92 vol%) and only low amounts of fine-grained interchondrule matrix and rims (3–9 vol%). The mean degree of chondrule deformation varies between 11% and 17%, compared to 5% in the clastic portions of their host breccias and to values of 3–5% found in UOC literature, respectively. The maximum deformation of individual chondrules is about 50%, a value which seemingly cannot be exceeded due to geometric limitations. Both viscous and brittle chondrule deformation is observed. A model for cluster chondrite formation is proposed where hot and deformable chondrules together with only small amounts of co-accreting matrix formed a planetesimal or reached the surface of an already existing body within hours to a few days after chondrule formation. They deformed in a hot stage, possibly due to collisional compression by accreting material. Later, the resulting rocks were brecciated by impact processes. Thus, cluster chondrite clasts are interpreted as relicts of primary accretionary rocks of unknown original dimensions. If correct, this places a severe constraint on chondrule-forming conditions. Cluster chondrites would document local chondrule formation, where chondrule-forming heating events and the accretion of chondritic bodies were closely linked in time and space.