SEARCH

SEARCH BY CITATION

References

  • Alexander C. M. O’D. 2005a. From supernovae to planets: The view from meteorites and interplanetary dust particles. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series 341. San Francisco: Astronomical Society of the Pacific. pp. 9721002.
  • Alexander C. M. O’D. 2005b. Re-examining the role of chondrules in producing the volatile element fractionations in chondrites. Meteoritics & Planetary Science40:943965.
  • Alexander C. M. O’D. and Ebel D. S.2012. Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved?Meteoritics & Planetary Science47:11571175.
  • Alexander C. M. O’D, Hutchison R., and Barber D. J.1989. Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites. Earth and Planetary Science Letters95:187207.
  • Alexander C. M. O’D., Fogel M., Yabuta H., and Cody G. D.2007. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochimica et Cosmochimica Acta71:43804403.
  • Alexander C. M. O’D., Grossman J. N., Ebel D. S., and Ciesla F. J.2008. The formation conditions of chondrules and chondrites. Science320:16171619.
  • Asphaug E., Jutzi M., and Movshovitz N.2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters208:369379.
  • Bischoff A. and Weyrauch M.2012. Macro chondrules in chondrites—Formation by melting of mega-sized dust aggregates and/or by rapid collisions at high temperatures?Meteoritics & Planetary Science47. This issue.
  • Bischoff A., Scott E. R. D., Metzler K., and Goodrich C. A.2006. Nature and origins of meteoritic breccias. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Tucson, Arizona: The University of Arizona Press. pp. 679712.
  • Brearley A. J. and Jones R. H.1998. Chondritic meteorites. In Planetary materials, edited by Papike J. J. Reviews in mineralogy, vol. 26. Washington D.C.: Mineralogical Society of America. pp 3.13.398.
  • Ciesla F. J., Lauretta D. S., and Hood L. L.2004. The frequency of compound chondrules and implications for chondrule formation. Meteoritics & Planetary Science39:531544.
  • Desch S. J. and Connolly H. C.2002. A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science37:183207.
  • Ferraris C., Folco L., and Mellini M.2002. Chondrule thermal history from unequilibrated H chondrites: A transmission and analytical electron microscopy study. Meteoritics & Planetary Science37:12991321.
  • Gooding J. L. and Keil K.1981. Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics16:1743.
  • Grossman J. N., Rubin A. E., Nagahara H., and King E. A.1988. Properties of chondrules. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 619659.
  • Grossman J. N., Alexander C. M. O’D, Wang J., and Brearley A. J.2000. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroid of ordinary chondrites. Meteoritics & Planetary Science35:467486.
  • Hewins R. H.1983. Dynamic crystallization experiments as constraints on chondrule genesis. In Chondrules and their origins, edited by King E. A. Houston, Texas: Lunar and Planetary Institute. pp. 122133.
  • Hewins R. H. and Zanda B.2012. Chondrules: Precursors and interactions with the nebular gas. Meteoritics & Planetary Science47:11201138.
  • Hewins R. H., Conolly H. C., Jr., Lofgren G. E., and Libourel G.2005. Experimental constraints on chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D. and Reipurth B. ASP Conference Series 341. San Francisco: Astronomical Society of the Pacific. pp. 286316.
  • Hewins R. H., Zanda B., and Bendersky C.2012. Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochimica et Cosmochimica Acta78:117.
  • Hezel D. C. and Palme H.2008. Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters265:716725.
  • Hezel D. C. and Palme H.2010. The chemical relationship between chondrules and matrix and the chondrule-matrix complementarity. Earth and Planetary Science Letters294:8593.
  • Hezel D. C., Needham A. W., Armytage R., Abel R., Kurahashi E., Coles B. J., Rehkämper M., and Russell S. S.2010. A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters296:423433.
  • Holmén B. A. and Wood J. A.1986. Chondrules that indent one another: Evidence for hot accretion?Meteoritics21:399.
  • Hughes D. W.1978. A disaggregation and thin section analysis of the size and mass distribution of the chondrules in the Bjurböle and Chainpur meteorites. Earth and Planetary Science Letters38:391400.
  • Huss R. G.1988. The role of presolar dust in the formation of the solar system. Earth, Moon, and Planets40:165211.
  • Huss R. G.1990. Ubiquitous interstellar diamond and SiC in primitive chondrites: Abundances reflect metamorphism. Nature347:159162.
  • Huss R. G., Keil K., and Taylor G. J.1981. The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites. Geochimica et Cosmochimica Acta45:3351.
  • Huss R. G., Rubin A. E., and Grossman J. N.2006. Thermal metamorphism in chondrites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 567586.
  • Hutchison R.1996a. Chondrules and their associates in ordinary chondrites: A planetary connection? In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H. and Scott E. R. D. Cambridge: Cambridge University Press. pp. 311318.
  • Hutchison R.1996b. Hot accretion of the ordinary chondrites; The rocks don’t lie (abstract). 28th Lunar and Planetary Science Conference. p. 579.
  • Hutchison R.2004. Meteorites—A petrologic, chemical and isotopic synthesis. Cambridge Planetary Science, edited by Bagenal F., Jewitt D., Murray C., Bell J., Lorenz R., Nimmo F., Russell S. Cambridge: Cambridge University Press. 506 p.
  • Hutchison R. and Bevan A. W. R.1983. Conditions and time of chondrule accretion. In Chondrules and their origins, edited by King E. A. Houston, Texas: Lunar and Planetary Institute. pp. 162179.
  • Hutchison R., Bevan A. W. R., Agrell S. O., and Ashworth J. R.1979. Accretion temperature of the Tieschitz, H3, chondritic meteorite. Nature280:116119.
  • Jones R. H.2010. Constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Workshop on “Chondrules: Their role in early solar system history. Meteoritics & Planetary Science45(Suppl.):A8003.
  • Keil K.1982. Composition and origin of chondritic breccias. In Workshop on lunar breccias and soils and their meteoritic analogs, edited by Taylor G. J. and Wilkening L. L. LPI Technical Reports 82-02, Houston, Texas: Lunar and Planetary Institute. pp. 6583.
  • Lauretta D. S., Killgore M., Benoir P. H., Moore S., and Sears D. W. G.2002. NWA 505: A new LL3.0 chondrite with evidence for chondrule formation in a dust-rich environment (abstract). Meteoritics & Planetary Science37:A84.
  • Lauretta D. S., Nagahara H., and Alexander C. M. O’D.2006. Petrology and origin of ferromagnesian silicate chondrules. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Tucson, Arizona: The University of Arizona Press. pp. 431459.
  • Makowsky A. and Tschermak G.1879. Bericht über den Meteoritenfall bei Tieschitz in Mähren. Denkschriften der kaiserlichen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Classe (Wien)39:187202.
  • Martin P. M. and Mills A. A.1976. Size and shape of chondrules in the Bjurböle and Chainpur meteorites. Earth and Planetary Science Letters33:239248.
  • Martin P. M. and Mills A. A.1978. Size and shape of near-spherical Allegan chondrules. Earth and Planetary Science Letters38:385390.
  • McSween H. Y., Jr. 1977. Chemical and petrographic constraints on the origin of chondrules and inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Acta41:18431860.
  • Metzler K.2010. “Cluster chondrites”: Primary accretionary rocks formed by hot accretion?Jahrestagung der Deutschen Mineralogischen Gesellschaft88:P3-03.
  • Metzler K.2011a. Ultra-rapid chondrite formation by hot chondrule accretion? Evidence from UOCs. Meteoritics & Planetary Science46(Suppl.):A5178.
  • Metzler K.2011b. Chondrite accretion within hours to a few days after chondrule formation? Textural evidence from UOCs. Workshop on Formation of the First Solids in the Solar System. LPI Contribution 1639. Houston, Texas: Lunar and Planetary Institute. p. 9111.
  • Metzler K., Bischoff A., and Stöffler D.1992. Accretionary dust mantles in CM-chondrites: Evidence for solar nebula processes. Geochimica et Cosmochimica Acta56:28732897.
  • Metzler K., Bischoff A., Greenwood R. C., Palme H., Gellissen M., Hopp J., Franchi I. A., and Trieloff M.2011. The L3-6 regolith breccia Northwest Africa (NWA) 869: (I) Petrology, chemistry, oxygen isotopes and Ar-Ar age determinations. Meteoritics & Planetary Science46:652680.
  • Nelson V. E. and Rubin A. E.2002. Size-frequency distributions of chondrules and chondrule fragments in LL3 chondrites: Implications for parent-body fragmentation of chondrules. Meteoritics & Planetary Science37:13611376.
  • Palme H., Spettel B., and Ikeda J1993. Origin of chondrules and matrix in carbonaceous chondrites. Meteoritics28:417.
  • Romstedt J. and Metzler K.1994. Brecciation and preirradiation of unequilibrated H chondrites. Meteoritics29:523524.
  • Rubin A. E.1995. Pouring “cold water” on hot accretion. Meteoritics30:568569.
  • Rubin A. E.2010. Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta74:48074828.
  • Rubin A. E. and Brearley A. J.1996. A critical evaluation of the evidence for hot accretion. Icarus124:8696.
  • Rubin A. E. and Swindle T. D.2011. Flattened chondrules in the LAP 04581 LL5 chondrite: Evidence for an oblique impact into LL3 material and subsequent collisional heating. Meteoritics & Planetary Science46:587600.
  • Sanders I. S. and Hill H. G. M1994. Multistage compound chondrules and molded chondrules in the Bovedy (L3) meteorite. Meteoritics29:527528.
  • Sanders I. S. and Scott E. R. D.2012. The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals?Meteoritics & Planetary Science. This issue.
  • Scott E. R. D.1984. Classification, metamorphism, and brecciation of type 3 chondrites from Antarctica. Smithsonian Contributions to the Earth Sciences26:7393.
  • Scott E. R. D. and Taylor G. J.1982. Primitive breccias among the type 3 ordinary chondrites—Origin and relation to regolith breccias. In Workshop on lunar breccias and soils and their meteoritic analogs, edited by Taylor G. J. and Wilkening L. L. LPI Technical Report 82-02. Houston, Texas: Lunar and Planetary Institute. pp. 130134.
  • Skinner W. R.1989. Cold vs. hot accretion of Tieschitz and other chondrites. Proceedings, 20th Lunar and Planetary Science Conference. pp. 10181019.
  • Sneyd D. S., McSween H. Y., Sugiura N., Strangway D. W., and Nord G. L.1988. Origin of petrofabrics and magnetic anisotropy in ordinary chondrites. Meteoritics23:139149.
  • Taylor G. J, Scott E. R. D., and Keil K.1983. Cosmic setting for chondrule formation. In Chondrules and their origins, edited by King E. A. Houston, Texas: Lunar and Planetary Institute. pp. 262278.
  • Wasson J. T., Krot A. N., Lee M. S., and Rubin A. E.1995. Compound chondrules. Geochimica et Cosmochimica Acta59:18471869.
  • Weidenschilling S. J. and Cuzzi J. N.2006. Accretion dynamics and timescales: Relation to chondrites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 473485.
  • Weisberg M. K. and Prinz M.1996. Agglomeratic chondrules, chondrule precursores, and incomplete melting. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge: Cambridge University Press. pp. 119127.
  • Wood J. A.1987. Was chondritic material formed during large-scale, protracted nebular evolution or by transient local events in the nebula? Proceedings, 18th Lunar and Planetary Science Conference. pp. 11001101.
  • Zanda B.2004. Chondrules. Earth and Planetary Science Letters224:117.
  • Zanda B., Bourot-Denise M., Hewins R. H., Cohen B. A., Delaney J. S., Humayun M., and Campbell A. J.2002. Accretion textures, iron evaporation and re-condensation in Renazzo chondrules (abstract #1852). 33rd Lunar and Planetary Science Conference. CD-ROM.