SEARCH

SEARCH BY CITATION

References

  • Alard O., Griffin W. L., Lorand J.-P., Pearson N., and O’Reilly S. Y.2000. Non-chondritic HSE patterns in mantle sulfides. Nature407:891894.
  • Bai W., Robinson P. T., Fang Q., Yang J., Yan B., Zhang Z., Hu X. H., Zhou M. F., and Malpas J.2000. The PGE and base-metal alloys in the podiform chromitites of the Luobusa opholite, Southern Tibet. Canadian Mineralogist38:585598.
  • Barin I. 1995. Thermochemical data of pure substances. Weinheim: VCH. 1885 p.
  • Barnes S.-J., van Achterbergh E., Makovicky E., and Li C.2001. Proton microprobe results for the partitioning of platinum-group elements between monosulfide solid solution and sulphide liquid. South African Journal of Geology104:275286.
  • Barton P. B.1970. Sulfide petrology. Mineralogical Society of America Special Paper3:187198.
  • Beck P., Barrat J. A., Gillet P., Wadhwa M., Franchi I. A., Greenwood R. C., Bohn M., Cotten J., van de Moortèle B., and Reynard B.2006. Petrography and geochemistry of the chassignite Northwest Africa 2737 (NWA 2737). Geochimica et Cosmochimica Acta70:21272139.
  • Bennet C. E. G. and Graham J.1981. New observations on natural pyrrhotites: Magnetic transition in hexagonal pyrrhotite. American Mineralogist66:12541257.
  • Bird J. M. and Bassett W. A.1980. Evidence of a deep mantle history in terrestrial osmium-iridium-ruthenium alloys. Journal of Geophysical Research85:54615470.
  • Bläss U. W., Langenhorst F., and McCammon C.2010. Microstructural investigations on strongly stained olivines of the chassignite NWA 2737 and implications for its shock history. Earth and Planetary Science Letters300:255263.
  • Bockrath C., Ballhaus C., and Holzheid A.2004. Stabilities of Laurite RuS2 and monosulfide liquid solutions at magmatic temperatures. In Highly siderophile elements and igneous processes, edited by Reisberg L., Lorand J.-P., Alard O., and Ohnenstetter M. Chemical Geology208:247264.
  • Bodgard D. D. and Garrison D. H.2008. 39Ar–40Ar age and thermal history of Martian dunite NWA 2737. Earth and Planetary Science Letters273:386392.
  • Brearley A. J. and Jones R. H. 1997. Chondritic meteorites. In Planetary materials, edited by Papike J. J. Reviews in Mineralogy, vol. 36. Washington, D.C.: Mineralogical Society of America. pp. 3-0013-398.
  • Brenan J. M., Cherniak D. J., and Rose L. A.2000. Diffusion of osmium in pyrrhotite and pyrite: Implications for closure of the Re-Os isotopic system. Earth and Planetary Science Letters180:399413.
  • Bullanova G. P., Griffin W. L., Ryan C. G., Shestakova Ye O., and Barnes S. J.1996. Trace elements in sulfide inclusion from Yakutian diamonds. Contributions to Mineralogy and Petrology124:111125.
  • Bunch T. E and Reid A. M.1975. The nakhlites. I. Petrography and mineral chemistry. Meteoritics10:303315.
  • Burgess R., Wright I. P., and Pillinger C. T.1989. Distribution of sulphides and oxidized sulphur components in SNC meteorites. Earth and Planetary Science Letters93:314320.
  • Carpenter R. H. and Bailey A.1973. Application of Ro and Ar measurements to the study of pyrrhotite and troilite. American Mineralogist58:440443.
  • Chevrier V., Lorand J.-P., and Sautter V.2011. Sulfide petrology of four nakhlites (NWA 817, NWA 998, Nakhla, Governador Valadares). Meteoritics & Planetary Science46:769784.
  • Clarke R. Y. and Scott E. R. D.1980. Tetrataenite-ordered FeNi, a new mineral in meteorites. American Mineralogist65:624630.
  • Dekkers M. J.1989. Magnetic properties of natural pyrrhotite. Part II: High and low-temperature behavior of Jrs and TRM as a function of grain size. Physics of the Earth and Planetary Interiors57:266283.
  • Delaney J. S. and Dyar M. D.2001. Magmatic magnetite in Martian meteorite melt inclusions from Chassigny (abstract). Meteoritics36:A48.
  • Eggler D. H. and Lorand J.-P.1993. Mantle sulfide oxybarometry. Geochimica et Cosmochimica Acta57:22132222.
  • Etschmann B., Pring A., Putnis A., Grguric B. A., and Studer A.2004. A kinetic study of the exsolution of pentlandite (Ni,Fe)9S8 from the monosulfide solid solution (Fe,Ni)S. American Mineralogist89:3950.
  • Ewers W. E.1972. Nickel-iron exchange in pyrrhotite. Proceedings of the Australasian Institute of Mining and Metallurgy241:1025.
  • Farquhar J., Kim S. T., and Masterson A.2007. Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth and Planetary Science Letters264:18.
  • Fleet M. E. and Stone W. E.1991. Partitioning of platinum-group elements in the Fe-Ni-S system and their fractionation in nature. Geochimica et Cosmochimica Acta55:245253.
  • Floran R. J., Printz M., Hlava P. F., Keil K., Nehru C. E., and Hinthorne J. R.1978. The Chassigny meteorite: A cumulate dunite with hydrous amphibole-bearing melt inclusions. Geochimica et Cosmochimica Acta42:12131229.
  • Greenwood J. P., Mojzsis S. J., and Coath C. D.2000. Sulfur isotopic compositions of individual sulfides in Martian meteorites ALH84001 and Nakhla: Implications for crust-regolith exchange on Mars. Earth and Planetary Science Letters184:2335.
  • Ikeda Y., Yamamoto T., Kojima H., Imae N., Kong P., and Ebihara M.1997. Yamato-791093, a metal-sulfide-enriched H-group chondritic meteorite transitional to primitive IIE irons with silicate inclusions. Antarctic Meteorite Research10:335353.
  • Janzen M. P., Nicholson R. V., and Scharer J. M.2000. Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochimica et Cosmochimica Acta64:15111522.
  • Jones J. H., Neal C. R., and Ely J. C.2003. Signatures of the highly siderophile elements in the SNC meteorites and Mars, a review and petrologic synthese. Chemical Geology196:5776.
  • Joreau P., French B. M., and Doukhan J.-C.1996. A TEM investigation of shock metamorphism in quartz from the Sudbury impact structure (Canada). Earth and Planetary Science Letters138:137143.
  • Karup-Møller S. and Makovicky E.1995. The phase system Fe–Ni– S at 725 °C. Neues Jahrbuch fur Mineralogie, Monatshefte1:110.
  • Kimura M. and Ikeda Y.1992. Mineralogy and petrology of an unusual Belgica-7904 carbonaceous chondrite: Genetic relationships between the components. Proceedings of the NIPR Symposium on Antarctic Meteorites5:72117.
  • Kimura M., Grossman J. N., and Weisberg M. K.2008. Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteoritics & Planetary Science43:11611177.
  • Kimura M., Grossman J. N., and Weisberg M. K.2011. Fe-Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history. Meteoritics & Planetary Science46:431442.
  • Knauth L. P., Burt D. M., and Wohletz K. H.2005. Impact origin of sediments at the opportunity landing site on Mars. Nature438:11231128.
  • Kullerud G., Yund R. A., and Moh G. H.1969. Phase relations in the Cu-Fe-S, Cu-Ni-S and Fe-Ni-S systems. In Magmatic ore deposits, edited by Wilson H. D. B. Lancaster, Pennsylvania: Economic Geology Publishing Co. pp. 323343.
  • Li C., Barnes S.-J., Makovicky E., Rose-Hansen J., and Makovicky M.1996. Partitioning of nickel, copper, iridium, rhenium, platinum and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochimica et Cosmochimica Acta60:12311238.
  • Lorand J.-P.1985. The behaviour of the upper mantle sulfide component during the incipient serpentinization of “alpine-type” peridotites as exemplified by the Beni Bousera (Northern Morocco) and Ronda (Southern Spain) ultramafic bodies. Tschemarks Mineralogische und Petrographische Mitteilungen34:183209.
  • Lorand J.-P. 1988. The Cu-Fe-Ni sulfide assemblages of tectonic peridotites from the Maqsad district, Sumail ophiolite, Southern Oman: Implications for the origin of the sulfide component in the oceanic upper-mantle. In The ophiolites of Oman, edited by Boudier F. and Nicolas A. Tectonophysics151:5774.
  • Lorand J.-P. and Alard O.2001. Geochemistry of platinum-group elements in the subcontinental lithospheric mantle; in-situ and whole-rock analyses of some spinel peridotite xenoliths, Massif Central, France. Geochimica et Cosmochimica Acta65:27892806.
  • Lorand J.-P., Chevrier V., and Sautter V.2005. Sulfide mineralogy and redox conditions in some Shergottites. Meteoritics & Planetary Science Letters40:12571272.
  • Louzada K. L., Stewart S. T., Weiss B. P., Gattacceca J., Lillis R. J., and Halekas S. J.2011. Impact demagnetization of the Martian crust: Current knowledge and future directions. Earth and Planetary Science Letters305:257269.
  • MacQueen K. G.1979. Experimental heating and diffusion effects in the Fe-Ni-S ore from Redross, Western Australia. Economic Geology74:140148.
  • Malavergne V., Guyot F., Benzerara K., and Martinez I.2001. Description of new shock-induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteoritics & Planetary Science36:12971305.
  • Mallmann G. and O’Neill H. St. C.2009. The crystal/melt partitioning of V during mantle melting as a funtion of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology50:17651794.
  • McSween H. Y., Jr. 2002. The rocks of Mars, from far and near. Meteoritics & Planetary Science37:725.
  • McSween H. Y., Jr. and Treiman A. H. 1997. Martian meteorites. In Planetary materials, edited by Ribbe P. H. Reviews in Mineralogy, vol. 36. Washington, D.C.: Mineralogical Society of America. pp. 6-016-54.
  • Mikhlin Y. L., Kuklinskiy A. V., Pavlenko N. I., Varnek V. A., Asanov I. P., Okotrub A. V., Selyutin G. E., and Solovyev L. A.2002. Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites. Geochimica et Cosmochimica Acta66:40574067.
  • Misra K. C. and Fleet M. E.1973. The chemical composition of synthetic and natural pentlandite assemblages. Economic Geology68:519538.
  • Murck B. W and Campbell I. H.1986. The effects of T, fO2 and melt composition on the behaviour of Cr in basic and ultrabasic melts. Geochemica et Cosmochimica Acta50:18711883.
  • Nyquist E., Bogard D. D., Shih C. Y., Greshake A., Stöffler D., and Eugster O.2001. Ages and geologic histories of Martian meteorites. In Chronology and evolution of Mars, edited by Kallenbach R., Geiss J. and Hartmann W. K. Dordrecht: Kluwer. pp. 105164.
  • Pedersen A. K.1979. Basaltic glass with high-temperature equilibrated immiscible sulphide bodies with native iron from Disko, central West Greenland. Contributions to Mineralogy and Petrology69:397407.
  • Peregoedova A., Barnes S.-J., and Baker D. R., 2004. The formation of Pt-Ir alloys and Cu-Pd-rich sulfide melts by partial desulfuration of Fe-Ni-Cu sulfides: Results of experiments and implications for natural systems. In Highly siderophile elements and igneous processes, edited by Reisberg L., Lorand J.-P., Alard O., and Ohnenstetter M. Chemical Geology208:247264.
  • Pieters C. M., Klima R. L., Hiroi T., Dyar M. D., Lane M. D., Treiman A. H., Noble S. K., Sunshine J. M., and Bishop J. L.2008. Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine. Journal of Geophysical Research113:E06004. doi: 10.1029/2007/JE002939.
  • Rochette P., Lorand J.-P., Fillion G., and Sautter V.2001. Pyrrhotite and the remanent magnetization of SNC meteorites: A changing perpective on Martian magnetism. Earth and Planetary Science Letters190:112.
  • Rochette P., Gattacceca J., Chevrier V., Hohmann V., Lorand J.-P., Funaki M., and Hochleitner R.2005. Matching martian magnetic anomalies and meteorite magnetic properties. Meteoritics & Planetary Science40:529540.
  • Roedder P. and Reynolds I.1991. Crystallization of chromite and chromium solubility in basaltic melts. Journal of Petrology32:909934.
  • Stöffler D., Ostertag R., Jammes C., Pfanschmidt G., Gupta P. R. S, Simon S. B., Papike J. J., and Beauchamp R. H.1986. Shock metamorphism and petrography of the Shergotty achondrite. Geochimica et Cosmochimica Acta50:889903.
  • Stöffler D., Keil K., and Scott E. R. D.1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta55:38453867.
  • Toulmin P. and Barton P. B.1964. A thermodynamic study of pyrite and pyrrhotite. Geochimica et Cosmochimica Acta28:641671.
  • Treiman A. H., Gleason J. D., and Bogard D. D.2000. The SNC meteorites are from Mars. Planetary and Space Science48:12131230.
  • Treiman A. H., Dyar M. D., McCanta M., Noble S. K., and Pieters C. M.2007. Martian dunite NWA 2737: Petrographic constraints on geological history, shock events, and olivine color. Journal of Geophysical Research112:E04002. doi:10.1029/2006JE002777.
  • Uehara M., Gattacceca J., Leroux H., Jacob D., and van der Beek C. D.2011. Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth and Planetary Science Letters306:241252.
  • Van de Moortèle B., Reynard B., Rochette P., Jackson M., Beck P., Gillet P., McMillan P. F., and McCammon C. A.2007. Shock-induced metallic iron nanoparticles in olivine-rich Martian meteorites. Earth and Planetary Science Letters262:3749.
  • Vaughan D. J. and Craig J. R.1978. Mineral chemistry of metal sulfides. Cambridge: Cambridge University Press. 493 p.
  • Wenworth S. J., and Goodings J. L.1994. Carbonates and sulfates in Chassigny meteorites; further evidence for aqueous alteration on the SNC parent body. Meteoritics29:860863.
  • Yang C. W., Williams D. B., and Goldstein J. I.1997. Low-temperature phase decomposition in metal from iron, stony-iron, and stony meteorites. Geochimica et Cosmochimica Acta61:29432956.