SEARCH

SEARCH BY CITATION

References

  • Ahrens T. J. and Rubin A. M.1993. Impact-induced tensional failure in rock. Journal of Geophysical Research98:11851203.
  • Atkinson B. K.1984. Subcritical crack growth in geological materials. Journal of Geophysical Research89:40774114.
  • Baldwin E. C., Milner D. J., Burchell M. J., and Crawford I. A.2007. Laboratory impacts into dry and wet sandstone with and without an overlying layer: Implications for scaling laws and projectile survivability. Meteoritics & Planetary Science42:19051914.
  • Barnouin-Jha O. S., Yamamoto S., Toriumi T., Sugita S., and Matsui T.2007. Non-intrusive measurements of crater growth. Icarus188:506521.
  • Buhl E., Poelchau M. H., Dresen G., and Kenkmann T.2013. Deformation of dry and wet sandstone targets during hyper-velocity impact experiments, as revealed from the MEMIN program. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01431.x.
  • Burchell M. J. and Johnson E.2005. Impact craters on small icy bodies such as icy satellites and comet nuclei. Monthly Notices of the Royal Astronomical Society360:769781.
  • Burchell M. J. and Whitehorn L.2003. Oblique incidence hypervelocity impacts on rock. Monthly Notices of the Royal Astronomical Society341:192198.
  • Butkovich T. R.1971. Influence of water in rocks on effects of underground nuclear explosions. Journal of Geophysical Research76:19932011.
  • Carr M. H., Crumpler L. A., Cutts J. A., Greeley R., Guest J. E., and Masursky H.1977. Martian craters and emplacement of ejecta by surface flows. Journal of Geophysical Research82:40554065.
  • Dufresne A., Poelchau M. H., Kenkmann T., Deutsch A., Hoerth T., Schäfer F., and Thoma K. 2013. Crater morphology in sandstone targets: The MEMIN impact parameter study. Meteoritics & Planetary Science48, doi: 10.1111/maps.12024.
  • Ebert M., Hecht L., Deutsch A., and Kenkmann T.2013. Chemical modification of projectile residues and target material in a MEMIN cratering experiment. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.1429.x.
  • Erskine D., Nellis W. J., and Weir S. T.1994. Shock wave profile study of tuff from the Nevada Test Site. Journal of Geophysical Research99:1552915537.
  • Folco L., Di Martino M., El Barkooky A., D’Orazio M., Lethy A., Urbini S., Nicolosi I., Hafez M., Cordier C., van Ginneken M., Zeoli A., Radwan A. M., El Khrepy S., El Gabry M., Gomaa M., Barakat A. A., Serra R., and El Sharkawi M.2011. Kamil crater (Egypt): Ground truth for small-scale meteorite impacts on Earth. Geology39:179182. doi: 10.1130/G31624. 1.
  • Gault D. E.1973. Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks. The Moon6:3244.
  • Goodman E. H. and Liles C. D. 1963. Particle-solid impact phenomena. Proceedings, 6th Hypervelocity Impact Symposium. pp. 543576.
  • Grady D. E. and Kipp M. E.1987. Dynamic rock fragmentation. In Fracture mechanics of rock, edited by Atkinson B. K. San Diego: Academic Press. pp. 429475.
  • Güldemeister N., Durr N., Wünnemann K., and Hiermaier S. 2013. Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01430.x
  • Hiesinger H., van der Bogert C. H., Pasckert J. H., Funcke L., Giacomini L., Ostrach L. R., and Robinson M. S.2012. How old are young lunar craters?Journal of Geophysical Research, 117:E00H10. doi:10.1029/2011JE003935.
  • Hiltl M., Swift R. P., Hagelberg C. R., Carney T. C., and Nellis W. J. 2000. Shock-recovery experiments of sandstone under dry and water-saturated conditions. Proceedings, 11th Topical Conference on Shock Compression of Condensed Matter. pp. 12511254.
  • Hoerth T., Schäfer F., Thoma K., Kenkmann T., Poelchau M. H., Lexow B., and Deutsch A.2013. Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth. Meteoritics & Planetary Science48, doi: 10.1111/maps.12044.
  • Holsapple K. A.1980. The equivalent depth of burst for impact cratering. Proceedings, 11th Lunar and Planetary Science Conference. pp. 23792401.
  • Holsapple K. A.1993. The scaling of impact processes in planetary sciences. Annual Review of Earth and Planetary Science21:333373.
  • Holsapple K. A. and Housen K. R. 2004. The cratering database: Making code jockeys honest (abstract #1779). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Holsapple K. A. and Housen K. R.2007. A crater and its ejecta: An interpretation of deep impact. Icarus187:345356.
  • Holsapple K. A. and Schmidt R. M.1982. On the scaling of crater dimensions 2. Impact processes. Journal of Geophysical Research87:18491870.
  • Housen K. R. and Holsapple K. A.2003. Impact cratering on porous asteroids. Icarus163:102119.
  • Kenkmann T. and Schönian F.2006. Ries and Chicxulub: Impact craters on Earth provide insights for Martian ejecta blankets. Meteoritics & Planetary Science41:15871603.
  • Kenkmann T., Artemieva N. A., Wünnemann K., Poelchau M. H., Elbeshausen D., and Núñez del Prado H.2009. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage. Meteoritics & Planetary Science44:9851000.
  • Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science46:890902.
  • Kenkmann T., Trullenque G., Deutsch A., Hecht L., Ebert M., Salge T., Schäfer F., and Thoma K. 2013. Deformation and melting of steel projectiles in hypervelocity cratering experiments. Meteoritics & Planetary Science48, doi: 10.1111/maps.12018.
  • Kieffer S., Phakey P. P., and Christie J. M.1976. Shock processes in porous quartzite: Transmission electron microscope observations and theory. Contributions to Mineralogy and Petrology59:4193.
  • Kowitz A., Schmitt R. T., Reimold W. U., and Hornemann U. 2013. First MEMIN shock recovery experiments in dry, porous sandstone at low shock pressure (5–12.5 GPa). Meteoritics & Planetary Science48, doi: 10.1111/maps.12030.
  • Kring D. A. 2007. Guidebook to the geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater). LPI Contribution No. 1355. Houston, Texas: Lunar and Planetary Institute. 150 p.
  • Lange M. A. and Ahrens T. J.1987. Impact experiments in low-temperature ice. Icarus69:506518.
  • Lexow B., Wickert M., Thoma K., Schäfer F., Poelchau M. H., and Kenkmann T. 2013. The extra-large light-gas gun of the Fraunhofer EMI: Applications for impact cratering research. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01427.x.
  • Love S. G., Hörz F., and Brownlee D. E.1993. Target porosity effects in impact cratering and collisional disruption. Icarus105:216224.
  • Melosh H. J.1984. Impact ejection, spallation, and the origin of meteorites. Icarus59:234260.
  • Meyers M. A. 1994. Dynamic behavior of materials. New York: John Wiley & Sons, Inc. 668 p.
  • Michikami T., Moriguchi K., Hasegawa S., and Fujiwara A.2007. Ejecta velocity distribution for impact cratering experiments on porous and low strength targets. Planetary and Space Science55:7088.
  • Moore H. J. and Gault D. E.1962. Current tabulation of data from hypervelocity impact experiments. U.S. Geological Survey Astrogeologic Studies Semiannual Progress Report, Feb. 25, 1961–Aug. 24, 1961. pp. 106112.
  • Moore H. J., MacCormack R. W., and Gault D. E. 1963. Fluid impact craters and hypervelocity-high velocity impact experiments in metals and rocks. Proceedings, 6th Hypervelocity Impact Symposium. pp. 367400.
  • Moser D., Poelchau M. H., Stark F., and Grosse C. 2013. Application of non-destructive testing methods to study the damage zone underneath impact craters of laboratory experiments. Meteoritics & Planetary Science48, doi: doi: 10.1111/maps.12000.
  • Oberbeck V. R. 1977. Application of high explosion cratering data to planetary problems. In Impact and explosion cratering, edited by Roddy D. J., Pepin R. O., and Merrill R. B. New York: Pergamon. pp. 4564.
  • Palchik V.2006. Application of Mohr–Coulomb failure theory to very porous sandy shales. International Journal of Rock Mechanics & Mining Sciences43:11531162.
  • Roddy D. J., Boyce J. M., Colton G. W., and Dial A. L, Jr.1975. Meteor Crater, Arizona, rim drilling with thickness, structural uplift, diameter, depth, volume, and mass-balance calculations. Proceedings 6th Lunar Science Conference. pp. 26212644.
  • Schäfer F., Thoma K., Behner T., Kenkmann T., Wünnemann K., and MEMIN Team. 2006. Impact tests on dry and wet sandstone. Proceedings, 1st International Conference on Impact Cratering in the Solar System. ESA Special Publication #612.
  • Schmidt R. M.1980. Meteor Crater: Energy of formation-implications of centrifuge scaling. Proceedings, 11th Lunar and Planetary Science Conference. pp. 20992128.
  • Schmidt R. M. and Housen K. R.1987. Some recent advances in the scaling of impact and explosion cratering. International Journal of Impact Engineering5:543560.
  • Schultz P. H., Eberhardy C. A., Ernst C. M., A’Hearn M. F., Sunshine J. M., and Lisse C. M.2007. The Deep Impact oblique impact cratering experiment. Icarus190:295333.
  • Shoemaker E. M.1963. Hypervelocity impact of steel into Coconino sandstone. American Journal of Science261:668682.
  • Shrine N. R. G., Burchell M. J., and Grey I. D. S.2002. Velocity scaling of impact craters in water ice over the range 1–7.3 km/s. Icarus155:475485.
  • Smith P. H., Tamppari L. K., Arvidson R. E., Bass D., Blaney D., Boynton W. V., Carswell A., Catling D. C., Clark B. C., Duck T., DeJong E., Fisher D., Goetz W., Gunnlaugsson H. P., Hecht M. H., Hipkin V., Hoffman J., Hviid S. F., Keller H. U., Kounaves S. P., Lange C. F., Lemmon M. T., Madsen M. B., Markiewicz W. J., Marshall J., McKay C. P., Mellon M. T., Ming D. W., Morris R. V., Pike W. T., Renno N., Staufer U., Stoker C., Taylor P., Whiteway J. A., and Zent A. P.2009. H2O at the Phoenix landing site. Science325:5861.
  • Smrekar S., Cintala M. J., and Hörz F.1986. Small-scale impacts into rock: An evaluation of the effects of target temperature on experimental results. Geophysical Research Letters13:745748.
  • Sommer F., Reiser F., Dufresne A., Poelchau M. H., Hoerth T., Deutsch A., Kenkmann T., and Thoma K.2013. Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit. Meteoritics & Planetary Science48, doi: 10.1111/maps.12017.
  • Stöffler D. and Langenhorst F.1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics29:155181.
  • Stück H., Siegesmund S., and Rüdrich J.2011. Weathering behaviour and construction suitability of dimension stones from the Drei Gleichen area (Thuringia, Germany). Environmental Earth Sciences63:17631786.
  • Tancredi G., Ishitsuka J., Schultz P. H., Harris R. S., Brown P., Revelle D. O., Antier K., Le Pichon A., Rosales D., Vidal E., Varela M. E., Sánchez L., Benavente S., Bojorquez J., Cabezas D., and Dalmau A.2009. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteoritics & Planetary Science44:19671984.
  • Wünnemann K., Collins G. S., and Melosh H. J.2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus180:514527.
  • Wünnemann K., Nowka D., Collins G. S., Elbeshausen D., and Bierhaus M. 2011. Scaling of impact crater formation on planetary surfaces–Insights from numerical modeling. Proceedings, 11th Hypervelocity Impact Symposium. pp. 116.
  • Zel’dovich Y. B., and Raizer Y. P. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena, vol. 2. New York: Academic Press. 944 p.