SEARCH

SEARCH BY CITATION

References

  • Abels A.2005. Spider impact structure, Kimberley Plateau, Western Australia: Interpretations of formation mechanism and age based on integrated map-scale data. Australian Journal of Earth Sciences52:653664.
  • Ahrens T. J. and Rubin A. M.1993. Impact-induced tensile failure in rock. Journal of Geophysical Research98:11851203.
  • Ai H.-A. and Ahrens T. J.2004. Dynamic tensile strength of terrestrial rocks and application to impact cratering. Meteoritics & Planetary Science39:233246.
  • Baldwin E. C., Milner D. J., Burchell M. J., and Crawford I. A.2007. Laboratory impacts into dry and wet sandstone with and without an overlying water layer: Implications for scaling laws and projectile survivability. Meteoritics & Planetary Science42:19051914.
  • Barbee T. W., Seaman L., Crewdson R., and Curran D.1972. Dynamic fracture criteria for ductile and brittle metals. Journal of Materials7:393401.
  • Barnouin-Jha O. S., Yamamoto S., Toriumi T., Sugita S., and Matsui T.2007. Non-intrusive measurements of crater growth. Icarus188:506521.
  • Birkhoff G., MacDougall D. P., Pugh E. M., and Taylor G.1948. Explosives with lined cavities. Journal of Applied Physics19:563582.
  • Buhl E., Poelchau M. H., Dresen G., and Kenkmann T.2013. Deformation of dry and wet sandstone targets during hyper-velocity impact experiments, as revealed from the MEMIN program. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01431.x.
  • Burchell M. J., Brooke-Thomas W., Leliwa-Kopystynski J., and Zarnecki J. C.1998. Hypervelocity impact experiments on solid CO2 targets. Icarus131:210222.
  • Collins G. S., Morgan J., Barton P., Christeson G. L., Gulick S., Urrutia J., Warner M., and Wünnemann K.2008. Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth and Planetary Science Letters270:221230.
  • Dyke C. G. and Dobereiner L.1991. Evaluating the strength and deformability of sandstones. Quarterly Journal of Engineering Geology24:123134.
  • Folco L., Di Martino M., Barkooky A. E., D’Orazio M., Lethy A., Urbini S., Nicolosi I., Hafez M., Cordier C., van Ginneken M., Zeoli A., Radwan A. M., El Khrepy S., El Gabry M., Gomaa M., Barakar A. A., Serra R., and El Sharkawi M.2010. The Kamil crater in Egypt. Science329:804.
  • Fujiwara A.1980. On the mechanism of catastrophic destruction of minor planets by high-velocity impact. Icarus41:356364.
  • Fujiwara A., Kamimoto G., and Tsukamoto A.1977. Destruction of basaltic bodies by high-velocity impact. Icarus31:277288.
  • Gault D. E.1973. Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks. The Moon6:3244.
  • Gault D. E., Quaide W. L., and Oberbeck V. R.1966. Luna 9 photographs: Evidence for a fragmental surface layer. Science53:985988.
  • Gault D. E., Quaide W. L., and Oberbeck V. R.1968. Impact cratering mechanics and structures. In Shock metamorphism of natural materials, edited by French B. M. and Short N. M. Baltimore, Maryland: Mono Book Corp. pp. 87100.
  • Gilath I., Salzmann D., Givon M., Dariel M., Kornblut L., and Bar-Noy T.1988. Spallation as an effect of laser-induced shock waves. Journal of Materials Science23:18251828.
  • Grey I. D. S. and Burchell M. J.2003. Hypervelocity impact cratering on water ice targets at temperatures ranging from 100 K to 253 K. Journal of Geophysical Research108:5019. doi:10.1029/2002JE001899.
  • Grey I. D. S., Burchell M. J., and Shrine N. R. G.2001. Laboratory investigations of the temperature dependence of hypervelocity impact cratering in ice. Advanced Space Research28:15271532.
  • Grieve R. A. F.1987. Terrestrial impact structures. Annual Reviews in Earth and Planetary Sciences15:245270.
  • Hoek E. and Brown E. T.1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics34:11651186.
  • Hoerth T., Schäfer F., Thoma K., Kenkmann T., Poelchau M. H., and Lexow B.2013. Hypervelocity impacts on dry and wet sandstones: Observations of ejecta dynamics and crater growth. Meteoritics & Planetary Science48, doi: 10.1111/maps.12044.
  • Holsapple K. A.1980. The equivalent depth of burst for impact cratering. Proceedings, 11th Lunar Planetary Science Conference. pp. 23792401.
  • Holsapple K. A.1993. The scaling of impact processes in planetary sciences. Annual Reviews in Earth and Planetary Sciences21:333373.
  • Holsapple K. A. and Schmidt R. M.1982. On the scaling of crater dimensions—2. Impact processes. Journal of Geophysical Research87:18491870.
  • Hörz F.1969. Structural and mineralogical evaluation of an experimentally produced impact crater in granite. Contributions to Mineralogy and Petrology21:365377.
  • Hörz F., Cintala M. J., and Zolensky M. E.1993. Hypervelocity penetration tracks in very low-density, porous targets. In Hypervelocity impacts in space, edited by McDonnell J. A. M. Canterbury, UK: Unit for Space Sciences University of Kent at Canterbury. pp. 1923.
  • Hörz F., Cintala M. J., Bernhard R. P., Cardenas F., Davidson W. E., Haynes G., See T. H., and Winkler J. L.1995. Penetration experiments in aluminium 1100 targets using soda-lime glass projectiles. NASA Technical Memorandum 104813. Washington, D.C.: U.S. Government Printing Office.
  • Johnson J. N.1981. Dynamic fracture and spallation in ductile solids. Journal of Applied Physics52:28122825.
  • Kenkmann T. and Ivanov B.2006. Target delamination by spallation and ejecta dragging: An example from the Ries crater’s periphery. Earth and Planetary Science Letters252:1529.
  • Kenkmann T., Ivanov B. A., and Stöffler D.2000. Identification of ancient impact structures: Low-angle normal faults and related geological features of crater basements. In Impacts and the early Earth, edited by Gilmour I. and Koeberl C. Lecture Notes in Earth Sciences. Berlin: Springer-Verlag, 91:271309.
  • Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study and the effect of pore water. Meteoritics & Planetary Science46:890902.
  • Koeberl C., Reimold W. U., Cooper G., Cowan D., and Vincent P. M.2005. Aorounga and Gweni Fada impact structures, Chad: Remote sensing, petrography, and geochemistry of target rocks. Meteoritics & Planetary Science40:14551471.
  • Lange M. A. and Ahrens T. J.1987. Impact experiments in low-temperature ice. Icarus69:506518.
  • Lange M. A., Ahrens T. J., and Boslough M. B.1984. Impact cratering and spall failure of gabbro. Icarus58:383395.
  • Love S. G., Hörz F., and Brownlee D. E.1993. Target porosity effects in impact cratering and collisional disruption. Icarus105:216224.
  • Melosh H. J.1977. Crater modification by gravity: A mechanical analysis of slumping. In Impact and explosion cratering, edited by Roddy D. J., Pepin R. O., and Merrill R. B. New York: Pergamon Press. pp. 12451260.
  • Melosh H. J.1984. Impact ejection, spallation, and the origin of meteorites. Icarus59:234260.
  • Melosh H. J.1989. Impact cratering—A geological process. New York: Oxford University Press. 245 p.
  • Melosh H. J. and Ivanov B. A.1999. Impact crater collapse. Annual Reviews of Earth and Planetary Sciences27:385415.
  • Meyers M. A.1994. Dynamic behavior of materials . New York: John Wiley & Sons, Inc. 668 p.
  • Moore H. J., Gault D. E., and Lugn R. V.1962. Experimental hypervelocity impact craters in rock. USGS Administrative Report .
  • Ogata Y., Jung W.-J., Kubota S., and Wada Y.2004. Effect of strain rate and water saturation for the dynamic tensile strength of rocks. Materials Science Forum465–466:361366.
  • O’Keefe J. D. and Ahrens T. J.1993. Planetary cratering mechanics. Journal of Geophysical Research98:1701117028.
  • Poelchau M. H., Kenkmann T., and Kring D. A.2009. Rim uplift and crater shape in Meteor Crater: Effects of target heterogeneity and trajectory obliquity. Journal of Geophysical Research114:E01006.
  • Poelchau M. H., Kenkmann T., Thoma K., Hoerth T., Dufresne A., and Schäfer F.2013. The MEMIN research unit: Scaling impact experiments in porous sandstone. Meteoritics & Planetary Science48, doi: 10.1111/maps.12016.
  • Polanskey A. and Ahrens T. J.1990. Impact spallation experiments: Fracture patterns and spall velocities. Icarus87:140155.
  • Schäfer F., Thoma K., Behner T., Nau S., Kenkmann T., Wünnemann K., Deutsch A., and the MEMIN Team. 2006. Impact experiments in dry and wet sandstone. Proceedings of the ESLAB-40: First International Conference on Impact Cratering in the Solar System. ESA Special Publication 612.
  • Schmidt R. M. and Housen K. R.1987. Some recent advances in the scaling of impact and explosion cratering. International Journal of Impact Engineering5:543560.
  • Schultz P. H., Ernst C. M., and Anderson J. L. B.2005. Expectations for crater size and photometric evolution from the deep impact impact collision. Space Science Reviews117:207239.
  • Shoemaker E. M.1960. Penetration mechanics of high velocity meteorites, illustrated by Meteor Crater, Arizona. 21st International Geological Congress Rep. Session Norden. pp. 418434.
  • Shoemaker E. M. and Kieffer S. W.1974. Guidebook to the geology of Meteor Crater, Arizona. Tempe: Centre for Meteorite Studies, Arizona State University. 66 p.
  • Shoemaker E. M., MacDonald F. A., and Shoemaker C. S.2005. Geology of five small Australian impact craters. Australian Journal of Earth Sciences54:529544.
  • Shrine N. R. G., Burchell M. J., and Grey I. D. S.2002. Velocity scaling of impact craters in water ice over the range 1 to 7.3 km s−1. Icarus155:475485.
  • Sommer F. D., Reiser F., Dufresne A., Poelchau M. H., Deutsch A., Hoerth T., Schäfer F., Kenkmann T., and Thoma K.2013. Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit. Meteoritics & Planetary Science48, doi: 10.1111/maps.12017.
  • Stück H., Siegesmund S., and Rüdrich J.2011. Weathering behavior and construction suitability of dimension stones from the Drei Gleichen area (Thuringia, Germany). Environmental Earth Sciences63:17631786.
  • Wiid B. L.1970. The influence of moisture content on the pre-rupture fracturing of two rock types. Proceedings of the 2nd Congress of the International Society of Rock Mechanics, Belgrade3:239245.
  • Wünnemann K., Collins G. S., and Melosh H. J.2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus180:514527.
  • Yamamoto S., Okabe N., Wada K., and Matsui T.2006. Transient crater growth in granular targets: An experimental study of low velocity impacts into glass sphere targets. Icarus183:215224.