SEARCH

SEARCH BY CITATION

References

  • Boss A. P. and Durisen R. H.2005. Sources of shock waves in the protoplanetary disk and the protoplanetary disk. In Chondrites and the Protoplanetary Disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series Proceedings, vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 821836.
  • Brandeis G. and Jaupart C.1987. The kinetics of nucleation and crystal growth and scaling laws for magmatic crystallization. Contributions to Mineralogy and Petrology96:2434.
  • Brearley A. J. and Jones R. H.1998. Chondritic meteorites. In Planetary materials, edited by Papike J. J. Reviews in Mineralogy, vol. 36. Washington, D.C.: Mineralogical Society of America. pp. 1370.
  • Cohen B. A., Hewins R. H., and Alexander C. M. O’D.2004. The formation of chondrules by open-system melting of nebular condensates. Geochimica et Cosmochimica Acta68:16611675.
  • Connolly H. C., Jr., Jones B. D., and Hewins R. H.1998. The flash melting of chondrules: An experimental investigation into the melting history and physical nature of chondrule precursors. Geochimica et Cosmochimica Acta62:27252735.
  • Connolly H. C., Desch S. J., Ash R. D. and Jones R. H.2006. Transient heating events in the protoplanetary nebula. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: The University of Arizona Press. pp. 383397.
  • Coogan L. A., Hain A., Stahl S., and Chakraborty S.2005. Experimental determination of the diffusion coefficient for calcium in olivine between 900 °C and 1500 °C. Geochimica et Cosmochimica Acta69:36833694.
  • Desch S. J., and Connolly H. C., Jr. 2002. A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science37:183208.
  • Desch S. J. and Cuzzi J. N.2000. The generation of lightning in the solar nebula. Icarus143:87105.
  • Desch S. J., Ciesla F. J., Hood L. L., and Nakamoto T.2005. Heating of chondritic materials in solar nebula shocks. In Chondrites and the Protoplanetary Disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series Proceedings, vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 849870.
  • Genge M. J., Engrand C., Gounelle M., and Taylor S.2008. The classification of micrometeorites. Meteoritics & Planetary Science43:497515.
  • Greenwood J. P. and Hess P. C. 1996. Congruent melting kinetics: Constraints on chondrule formation. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge: Cambridge University Press. pp. 205211.
  • Güttler C., Poppe T., Wasson J. T., and Blum J.2008. Exposing metal and silicate charges to electrical discharges: Did chondrules form by nebular lighting?Icarus195:504510.
  • Hewins R. H., and Connolly Jr. H. C.1996. Peak temperatures of flash-melted chondrules. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge: Cambridge University Press. pp. 197204.
  • Hewins R. H. and Fox G. E.2004. Chondrule textures and precursor grain size: An experimental study. Geochimica et Cosmochimica Acta68:917926.
  • Hewins R., Zanda B., Horányi M., Robertson S., Den Hartog D. J., and Fiksel G.2000. The trouble with flash heating (abstract #1675). 31st Lunar and Planetary Science Conference. CD-ROM.
  • Hewins R. H., Connolly H. C., Lofgren Jr. G. E. and Libourel G.2005. Experimental constraints on chondrule formation. In Chondrites and the Protoplanetary Disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series Proceedings, vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 286313.
  • Hezel D. C. and Palme H.2007. The conditions of chondrule formation, part I: Closed system. Geochimica at Cosmochimica Acta71:40924107.
  • Horányi M.1997. Lightning and shock heating as candidate processes for chondrule formation. In LPI Technical Report, LPITR 97-02, edited by Zolensky M. E., Krot A. N, and Scott E. R. D. Houston: Lunar and Planetary Institute. pp. 2450.
  • Horányi M., Morfill G., Goertz C. K., and Levy E. H.1995. Chondrule formation in lightning discharges. Icarus114:174185.
  • Jones R. H. 1996. Relict grains in chondrules: Evidence for chondrule recycling. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge: Cambridge University Press. pp. 163172.
  • Jones R. H., Grossman J. N., and Rubin A. E. 2005. Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series Proceedings, vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 251281.
  • Kunhardt E. E.2000. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Transactions on Plasma Science28:189200.
  • Lauretta D. S., Nagahara H., and Alexander C. M. O’D.2006. Petrology and origin of ferromagnesian silicate chondrules. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween Jr. H. Y. Tucson, Arizona: The University of Arizona Press. pp. 431459.
  • Laux C. O., Spence T. G., Kruger C. H., and Zare R. N.2003. Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Science and Technology12:125138.
  • Libourel G. and Chaussidon M.2011. Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters301:921.
  • Libourel M. and Krot A. N.2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth and Planetary Science Letters254:18.
  • Lofgren G. E.1996. A dynamic crystallization model for chondrule melts. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge: Cambridge University Press. pp. 187196.
  • Longhi J.1987. Liquidus equilibria and solid solution in the system CaAl2SiO8-Mg2SiO4-CaSiO3-SiO2 at low pressure. American Journal of Science287:265331.
  • Morioka M.1981. Cation diffusion in olivine—II. Ni-Mg, Mn-Mg, Mg and Ca. Geochimica et Cosmochimica Acta45:15731580.
  • Morris M. A. and Desch S. J.2010. Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal722:14741494.
  • Packan D. M., Yu L., Laux C. O. and Kruger C. H.2001. Direct-current glow discharges in atmospheric pressure air plasmas. Journal of Applied Physics91:26782686.
  • Pontoppidan K. M. and Brearley A. J.2010. Dust particle size evolution. In Protoplanetary dust: Astrophysical and cosmochemical perspectives, edited by Apai D. and Lauretta D. S. Cambridge: Cambridge University Press. pp. 191229.
  • Sanders I. S., and Taylor G. J. 2005. Implications of 26Al in nebular dust: Formation of chondrules by disruption of molten planetesimals. In Chondrites and the Protoplanetary Disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series Proceedings, vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 915930.
  • Shu F., Shang H., Glassgold A E., and Lee T.1997. X-rays and fluctuating X-winds from protostars. Science277:14751479.
  • Taylor S., Lever J. H., and Harvey R. P. H.2000. Numbers, types and compositions of an unbiased collection of cosmic spherules. Meteoritics & Planetary Science35:651666.
  • Taylor S., Jones K. W., Herzog G. F., and Hornig C. E.2011. Tomography: A window on the role of sulfur in the structure of micrometeorites. Meteoritics & Planetary Science46:14981509.
  • Toppani A. and Libourel G.2003. Factors controlling compositions of cosmic spinels: Application to atmospheric entry conditions of meteoritic materials. Geochimica et Cosmochimica Acta67:46214638.
  • Toppani A., Lobourel G., Engrand C., and Maurette M.2001. Experimental simulation of atmospheric entry of micrometeorites. Meteoritics & Planetary Science36:13771396.
  • Van Ginneken M., Folco L., Perchiazzi N., Rochette P., and Bland P. A.2010. Meteoritic ablation debris from the Transantarctic Mountains: Evidence for a Tunguska-like impact over Antarctica ca. 480 ka ago. Earth and Planetary Science Letters293:104113.
  • Zanda B.2004. Chondrules. Earth and Planetary Science Letters224:117.