SEARCH

SEARCH BY CITATION

References

  • Anderson J. L. B., Schultz P. H., and Heineck J. T.2003. Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. Journal of Geophysical Research108:50945103.
  • Anderson J. L. B., Schultz P. H., and Heineck J. T.2004. Experimental ejection angles for oblique impacts: Implications for the subsurface flow-field. Meteoritics & Planetary Science39:303320.
  • Baldwin E. C., Milner D. J., Burchell M. J., and Crawford I. A.2007. Laboratory impacts into dry and wet sandstone with and without an overlying water layer: Implications for scaling laws and projectile survivability. Meteoritics & Planetary Science42:19051914.
  • Barnouin-Jha O. S. and Schultz P. H.1996. Ejecta entrainment by impact-generated ring vortices: Theory and experiments. Journal of Geophysical Research101:99115.
  • Barnouin-Jha O. S., Yamamoto S., Toriumi T., Sugita S., and Matsui T.2007. Non-intrusive measurements of crater growth. Icarus188:506521.
  • Burchell M. J. and Whitehorn L.2003. Oblique incidence hypervelocity impacts on rock. Monthly Notices of the Royal Astronomical Society341:192198.
  • Butkovich T. R.1971. Influence of water in rocks on effects of underground nuclear explosions. Journal of Geophysical Research76:19932011.
  • Cintala M. J., Berthoud L., and Hörz F.1999. Ejection-velocity distributions from impacts into coarse-grained sand. Meteoritics & Planetary Science34:605623.
  • Collins G. S. and Wünnemann K. 2007. Numerical modeling of impact ejection processes in porous targets (abstract #1789). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Dufresne A., Poelchau M. H., Kenkmann T., Deutsch A., Hoerth T., Schäfer F., and Thoma K. 2013. Crater morphology in sandstone targets: the MEMIN impact parameter study. Meteoritics & Planetary Science47. This issue.
  • Ebert M., Hecht L., Deutsch A., and Kenkmann T.2012. Chemical modification of projectile residues and target material in a MEMIN cratering experiment. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.1429.x.
  • Ernst C. M. and Schultz P. H.2007. Evolution of the deep impact flash. Implications for the nucleus surface based on laboratory experiments. Icarus190:334344.
  • Erskine D., Nellis W. J., and Weir S. T.1994. Shock wave profile study of tuff from the Nevada Test Site. Journal of Geophysical Research99:1552915537.
  • Gault D. E.1973. Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks. The Moon6:3244.
  • Gault D. E., Shoemaker E. M., and Moore H. J. 1963. Spray ejected from the lunar surface. NASA Technical Note D-1767.
  • Greeley R., Fink J., Gault D. E., Snyder D. B., Guest J. E., and Schultz P. H. 1980. Impact cratering in viscous targets: Laboratory experiments. Proceedings, 11th Lunar and Planetary Science Conference. pp. 20752097.
  • Hermalyn B. and Schultz P.2010. Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand. Icarus209:866870.
  • Hermalyn B. and Schultz P.2011. Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: Effects of projectile density on early-time coupling and crater growth. Icarus216:269279.
  • Holsapple K. A.1993. The scaling of impact processes in planetary sciences. Annual Review of Earth and Planetary Science21:333373.
  • Holsapple K. A. and Housen K. R.2007. A crater and its ejecta: An interpretation of deep impact. Icarus187:345356.
  • Holsapple K. A. and Schmidt R. M.1987. Point source solutions and coupling parameters in cratering mechanics. Journal of Geophysical Research92:63506376.
  • Hörz F.1969. Structural and mineralogical evaluation of an experimentally produced impact crater in granite. Contributions to Mineralogy and Petrology21:365377.
  • Housen K. R. 1992. Crater ejecta velocities for impacts on rocky bodies. Proceedings, 23rd Lunar and Planetary Science Conference. pp. 555556.
  • Housen K. R. and Holsapple K. A.2011. Ejecta from impact craters. Icarus211:856875.
  • Housen K. R., Schmidt R. M., and Holsapple K. A.1983. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. Journal of Geophysical Research88:24852499.
  • Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science46:890902.
  • Kieffer S. W. and Simonds C. H.1980. The role of volatiles and lithology in the impact cratering process. Reviews of Geophysics and Space Physics18:143181.
  • Lange M. A., Ahrens T. J., and Boslough M. B.1984. Impact cratering and spall failure of gabbro. Icarus58:383395.
  • Lexow B., Wickert M., Thoma K., Schäfer F., Poelchau M. H., and Kenkmann T. 2013. The extra-large light-gas gun of the Fraunhofer EMI: Applications for impact cratering research. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01427.x.
  • Melosh H. J.1984. Impact ejection, spallation and the origin of meteorites. Icarus59:234260.
  • Michikami T., Moriguchi K., Hasegawa S., and Fujiwara A.2007. Ejecta velocity distribution for impact cratering experiments on porous and low strength targets. Planetary and Space Science55:7088.
  • Moser D., Poelchau M. H., Stark F., and Grosse C. 2012. Application of non-destructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments. Meteoritics & Planetary Science48, doi: 10.1111/maps.12000.
  • Piekutowski A. J. 1980. Formation of bowl-shaped craters. Proceedings, 11th Lunar and Planetary Science Conference. pp. 21292144.
  • Poelchau M. H., Kenkmann T., Thoma K., Hoerth T., Dufresne A., and Schäfer F. 2013. The MEMIN research unit: Scaling impact cratering experiments in porous sandstones. Meteoritics & Planetary Science48, doi: 10.1111/maps.12016.
  • Polanskey C. A. and Ahrens T. J.1990. Impact spallation experiments: Fracture patterns and spall velocities. Icarus87:140155.
  • Schäfer F., Thoma K., Behner T., Nau S., Kenkmann T., Wünnemann K., Deutsch A, and the MEMIN-Team. 2006. Impact experiments on dry and wet sandstone. Proceedings, 40th ESLAB Symposium. ESA Special Publication #612.
  • Schmidt R. M. and Housen K. R.1987. Some recent advances in scaling of impact and explosion cratering. International Journal of Impact Engineering5:543560.
  • Schultz P. H.1992. Atmospheric effects on ejecta emplacement. Journal of Geophysical Research97:623662.
  • Schultz P. H.1996. Effect of impact angle on vaporization. Journal of Geophysical Research101:117136.
  • Schultz P. H., Ernst C. M., and Anderson J. L. B.2005. Expections for crater size and photometric evolution from the deep impact collision. Space Science Reviews117:207239.
  • Senft L. E. and Stewart S. T.2008. Impact crater formation in icy layered terrains on Mars. Meteoritics & Planetary Science43:19932013.
  • Shoemaker E. M., Gault D. E., Moore H. J., and Lugn R. V.1963. Hypervelocity impact of steel into Coconino sandstone. American Journal of Science261:668682.
  • Sommer F., Reiser F., Dufresne A., Poelchau M. H., Deutsch A., Hoerth T., Schäfer F., Kenkmann T., and Thoma K. 2012. Ejection behavior characteristics of experimental impacts into dry and wet sandstone. Meteoritics & Planetary Science47. This issue.
  • Stöffler D. and Langenhorst F.1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics & Planetary Science29:155181.
  • Yamamoto S., Kadono T., Sugita S., and Matsui T.2005. Velocity distributions of high-velocity ejecta from regolith targets. Icarus178:264273.
  • Yamamoto S., Wada K., Okabe N., and Matsui T.2006. Transient crater growth in granular targets: An experimental study of low velocity impacts into glass sphere targets. Icarus183:215224.