SEARCH

SEARCH BY CITATION

References

  • Ashworth J. R. and Barber D. J. 1975. Electron petrography of shock-deformed olivine in stony meteorites. Earth and Planetary Science Letters 27:4350.
  • Ashworth J. R. and Hutchison R. 1975. Water in non-carbonaceous stony meteorites. Nature 256:714715.
  • Awad A., Koster van Groos A. F., and Guggenheim S. 2000. Forsteritic olivine: Effect of crystallographic direction on dissolution kinetics. Geochimica et Cosmochimica Acta 64:17651772.
  • Banfield J. F., Veblen D. R., and Jones B. F. 1990. Transmission electron microscopy of subsolidus oxidation and weathering of olivine. Contributions to Mineralogy and Petrology 106:110123.
  • Borg L. and Drake M. J. 2005. A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. Journal of Geophysical Research 110:E12S03.
  • Boudier F., Baronnet A., and Mainprice D. 2010. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite. Journal of Petrology 51:495512.
  • Brantley S. L. and Chen Y. 1995. Chemical weathering rates of pyroxenes and amphiboles. In Chemical weathering rates of silicate minerals, edited by White A. F. and Brantley S. L. Reviews in Mineralogy, vol. 31. Washington, D.C.: Mineralogical Society of America. pp. 119172.
  • Bridges J. C. and Grady M. M. 2000. Evaporite mineral assemblages in the nakhlite (Martian) meteorites. Earth and Planetary Science Letters 176:267279.
  • Bridges J. C. and Warren P. H. 2006. The SNC meteorites: Basaltic igneous processes on Mars. Journal of the Geological Society, London 163:229251.
  • Bridges J. C., Catling D. C., Saxton J. M., Swindle T. D., Lyon I. C., and Grady M. M. 2001. Alteration assemblages in the Martian meteorites: Implications for near-surface processes. In Chronology and evolution of Mars, edited by Kallenbach R., Geiss J., and Hartmann W. K. Dordrecht, the Netherlands: Kluwer. pp. 365392.
  • Cassata W. S., Shuster D. L., Renne P. R., and Weiss B. P. 2010. Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites. Geochimica et Cosmochimica Acta 74:69006920.
  • Changela H. G. and Bridges J. C. 2011. Alteration assemblages in the nakhlites: Variation with depth on Mars. Meteoritics & Planetary Science 45:18471867.
  • Chizmadia L. J. and Brearley A. J. 2008. Mineralogy, aqueous alteration, and primitive textural characteristics of fine-grained rims in the Y-791198 CM2 carbonaceous chondrite: TEM observations and comparison to ALH81002. Geochimica et Cosmochimica Acta 72:602625.
  • Eugster O., Busemann H., Lorenzetti S., and Terrebilini D. 2002. Ejection ages from krypton-81-krypton-83 dating and pre-atmospheric sizes of Martian meteorites. Meteoritics & Planetary Science 37:13451360.
  • Friedman-Lentz R. C., Taylor G. J., and Treiman A. H. 1999. Formation of a Martian pyroxenite: A comparative study of the nakhlite meteorites and Theo's Flow. Meteoritics & Planetary Science 34:919932.
  • Fritz J., Artemieva N., and Greshake A. 2005. Ejection of Martian meteorites. Meteoritics & Planetary Science 40:13931411.
  • Gooding J. L., Wentworth S. J., and Zolensky M. E. 1991. Aqueous alteration of the Nakhla meteorite. Meteoritics 26:135143.
  • Grady M. M., Anand M., Gilmour M. A., Watson J. S., and Wright I. P. 2007. Alteration of the Nakhlite lava pile: Was water on the surface, seeping down, or at depth, percolating up? Evidence (such as it is) from carbonates (abstract #1826). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Hallis L. and Taylor G. J. 2011. Comparisons of the four Miller Range nakhlites, MIL 03346, 090030, 090032 and 090136: Textural and compositional observations of primary and secondary mineral assemblages. Meteoritics & Planetary Science 46:17871803.
  • Harvey R. P. and McSween H. Y. Jr. 1992. Petrogenesis of the nakhlite meteorites: Evidence from cumulate mineral zoning. Geochimica et Cosmochimica Acta 56:16551663.
  • Kirby S. H. and Wegner M. W. 1978. Dislocation substructure of mantle-derived olivine as revealed by selective chemical etching and transmission electron microscopy. Physics and Chemistry of Minerals 3:309330.
  • Korochantseva E. K., Schwenzer S. P., Buikin A. I., Hoppe J., Ott U., and Trieloff M. 2011. 40Ar-39Ar and cosmic-ray exposure ages of nakhlites−Nakhla, Lafayette, Governador Valadares−and Chassigny. Meteoritics & Planetary Science 46:13971417.
  • Langenhorst F., Joreau P., and Doukhan J. C. 1995. Thermal and shock metamorphism of the Tenham chondrite: A TEM examination. Geochimica et Cosmochimica Acta 59:18351845.
  • Langenhorst F., Boustie M., Migault A., and Romain J. P. 1999. Laser shock experiments with nanosecond pulses: A new tool for the reproduction of shock defects in olivine. Earth and Planetary Science Letters 173:333342.
  • Lee M. R. and Smith C. L. 2006. Scanning transmission electron microscopy using a SEM: Applications to mineralogy and petrology. Mineralogical Magazine 70:561572.
  • Lee M. R., Bland P. A., and Graham G. 2003. Preparation of TEM samples by focused ion beam (FIB) techniques: Applications to the study of clays and phyllosilicates in meteorites. Mineralogical Magazine 67:581592.
  • Lentz R. C. F., McCoy T. J., and Taylor G. J. 2005. Multiple Nakhlite lava flows? Meteoritics & Planetary Science 40:A91.
  • Mikouchi T., Yamada I., and Miyamoto M. 2000. Symplectic exsolution in olivine from the Nakhla Martian meteorite. Meteoritics & Planetary Science 35:937942.
  • Mikouchi T., Koizuni E., Monkawa A., Ueda Y., and Miyamoto M. 2003. Mineralogical comparison of Y000593 with other nakhlites: Implications for relative burial depths of nakhlites (abstract #1944). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Mikouchi T., Miyamoto M., Koizumi E., Makishima J., and Mckay G. 2006. Relative burial depths of nakhlites: An update (abstract #1865). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Mikouchi T., Makishima J., Kurihara T., Hoffmann V. H., and Miyamoto M. 2012. Relative burial depth of nakhlites revisited (abstract #2363). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Needham A. W., Abel R. L., Tomkinson T., Johnson D., and Grady M. M. 2011. Pooling of water and the formation of evaporite minerals in the Martian subsurface (abstract #2148). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Noguchi T., Nakamura T., Misawa K., Imae N., Aoki T., and Toh S. 2009. Laihunite and jarosite in the Yamato 00 nakhlites: Alteration products on Mars? Journal of Geophysical Research 114:E10004.
  • Plümper O., King H. E., Vollmer C., Ramasse Q., Jung H., and Austrheim H. 2012. The legacy of crystal-plastic deformation in olivine: High-diffusivity pathways during serpentinisation. Contributions to Mineralogy and Petrology 163:701724.
  • Rao M. N., Sutton S. R., McKay D. S., and Dreibus G. 2005. Clues to Martian brines based on halogens in salts from nakhlites and MER samples. Journal of Geophysical Research 110:12.
  • Sawyer D. J. McGhee M. D., Canepa J., and Moore C. P. 2000. Water soluble ions in the Nakhla Martian meteorite. Meteoritics & Planetary Science 35:743747.
  • Shirai N., and Ebihara M. 2008. Chemical characteristics of Nakhlites: Implications to the geological setting for Nakhlites (abstract #1643). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Stopar J. D., Taylor G. J., Hamilton V. E., and Browning L. 2006. Kinetic model of olivine dissolution and extent of aqueous alteration on Mars. Geochimica et Cosmochimica Acta 70:61366152.
  • Treiman A. H. 2005. The nakhlite meteorites: Augite-rich igneous rocks from Mars. Chemie der Erde 65:203270.
  • Treiman A. H. and Lindstrom D. J. 1997. Trace element geochemistry of Martian iddingsite in the Lafayette meteorite. Journal of Geophysical Research 102:91539163.
  • Treiman A. H., Barrett R. A., and Gooding J. L. 1993. Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite. Meteoritics 28:8697.
  • Velbel M. A. 2008. Aqueous corrosion textures of olivine in Mars meteorite MIL 03346 (abstract #1905). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Velbel M. A. 2009a. Dissolution of olivine during natural weathering. Geochimica et Cosmochimica Acta 73:60986113.
  • Velbel M. A. 2009b. Corrosion textures formed by aqueous alteration of Mars meteorite olivine and terrestrial analogs (abstract #4036). Workshop on Modelling Martian Hydrous Environments.
  • Velbel M. A. 2012. Aqueous alteration in Martian meteorites: Comparing mineral relations in igneous-rock weathering of Martian meteorites and in the sedimentary cycle of Mars. In Sedimentary geology of Mars, edited by Grotzinger J. and Milliken R. Society for Sedimentary Geology Special Publication 102:97117.
  • Velbel M. A. and Losiak A. I. 2010. Denticles on chain silicate grain surfaces and their utility as indicators of weathering conditions on Earth and Mars. Journal of Sedimentary Research 80:771780.
  • Velbel M. A. Stopar J. D., Taylor G. J., and Vicenzi E. P. 2010. Aqueous alteration of olivine in Mars meteorite MIL 03346: Corrosion textures and redistribution of elements in alteration products (abstract #2223). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Wegner M. W. and Christie J. M. 1976. Chemical etching of dislocations in forsterite. Contributions to Mineralogy and Petrology 59:131140.
  • Welch S. A. and Banfield J. F. 2002. Modification of olivine surface morphology and reactivity by microbial activity during chemical weathering. Geochimica et Cosmochimica Acta 66:213221.