SEARCH

SEARCH BY CITATION

References

  • Amsden A. A., Ruppel H. M., and Hirt C. W. 1980. SALE: A simplified ALE computer program for fluid flow at all speeds. Los Alamos, New Mexico: Los Alamos National Laboratory Report LA-8095. 101 p.
  • Collins G. S. and Wünnemann K. 2005. How big was the Chesapeake Bay impact? Insight from numerical modeling. Geology 33:925928.
  • Collins G. S., Melosh H. J., and Ivanov B. A. 2004. Modelling damage and deformation in impact simulations. Meteoritics & Planetary Science 39:217231.
  • Dalwigk I. von and Ormö J. 2001. Formation of resurge gullies at impacts at sea: The Lockne crater, Sweden. Meteoritics & Planetary Science 36:359370.
  • Gohn G. S., Powars D. S., Bruce T. S., and Self-Trail J. M. 2005. Physical geology of the impact-modified and impact generated sediments in the USGS-NASA Langley core, Hampton, Virginia, chap. C. In Studies of the Chesapeake Bay impact structure—The USGS-NASA Langley corehole, Hampton, Virginia, and related coreholes and geophysical surveys, edited by Horton J. W., Jr., Powars D. S., and Gohn G. S. USGS Professional Paper 1688. Washington, D.C.: United States Government Printing Office. pp. C1C38.
  • Gohn G. S., Koeberl C., Miller K. G., Reimold W. U., Browning J. V., Cockell C. S., Horton J. W., Jr., Kenkmann T., Kulpecz A. A., Powars D. S., Sanford W. E., and Voytek M. A. 2008. Deep drilling into the Chesapeake Bay impact structure. Science 320:17401745.
  • Gohn G. S., Powars D. S., Dypvik H., and Edwards L. E. 2009. Rock avalanche and ocean-resurge deposits in the late Eocene Chesapeake Bay impact structure: Evidence from the ICDP-USGS Eyreville cores, Virginia, USA. In The ICDP-USGS deep drilling project in the Chesapeake Bay impact structure: Results from the Eyreville coreholes, edited by Gohn G. S., Koeberl C., Miller K. G., and Reimold W. U. GSA Special Paper 458. Boulder, Colorado: Geological Society of America. pp. 587615.
  • Heuwinkel J. and Lindström M. 2007. Sedimentary and tectonic environment of the Ordovician Föllinge Greywacke, Storsjön area, Swedish Caledonides. GFF 129:3142.
  • Högdahl K. 2000. 1.86–1.85 Ga emplacement ages for K-feldspar megacryst bearing granites from the type area for the Revsund granites in Jämtland County, central Sweden. GFF 122:259266.
  • Horton J. W., Jr., Powars D. S., and Gohn G. S. 2005. Studies of the Chesapeake Bay impact structure—Introduction and discussion. In Studies of the Chesapeake Bay impact structure—The USGS-NASA Langley corehole, Hampton, Virginia, and related coreholes and geophysical surveys, edited by Horton J. W., Jr., Powars D. S., and Gohn G. S. USGS Professional Paper 1688. Washington, D.C.: United States Government Printing Office. pp. A1A24.
  • Horton J. W., Jr., Gohn G. S., Powars D. S., and Edwards L. E. 2008. Origin and emplacement of impactites in the Chesapeake Bay impact structure, Virginia, USA. In The sedimentary record of meteorite impacts, edited by Evans K. R., Horton J. W., Jr., King D. T., Jr., and Morrow J. R. Geological Society of America Special Paper 437:7397.
  • Kalleson E., Dypvik H., and Naterstad J. 2008. Postimpact sediments in the Gardnos impact structure, Norway. In The sedimentary record of meteorite impacts, edited by Evans K. R., Horton J. W., Jr., King D. T., Jr., and Morrow J. R. Geological Society of America Special Paper 437:1941, doi:10.1130/2008.2437(02).
  • King D., Ormö J., Petruny L. W., and Neathery T. L. 2006. Role of water in the formation of the Late Cretaceous Wetumpka impact structure, inner Gulf Coastal Plain of Alabama, USA. Meteoritics & Planetary Science 41:16251631.
  • Kirsimae K., Jorgensen P., and Kalm V. 1999. Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals 34(1):151163.
  • Lindström M. and Sturkell E. F. F. 1992. Geology of the Early Palaeozoic Lockne impact, Central Sweden. Tectonophysics 216:169185.
  • Lindström M., Sturkell E. F. F., Törnberg R., and Ormö J. 1996. The marine impact at Lockne, central Sweden. GFF 118:193206.
  • Lindström M., Ormö J., Sturkell E., and von Dalwigk I. 2005a. The Lockne crater: Revision and reassessment of structure and impact stratigraphy. In Impact tectonics, edited by Koeberl C. and Henkel H. Berlin: Springer Verlag. pp. 357388.
  • Lindström M., Shuvalov V., and Ivanov B. 2005b. Lockne crater as a result of marine-target oblique impact. Planetary and Space Science 53:803815.
  • Lindström M., Ormö J., and Sturkell E. 2008. Water-blow and resurge breccias at the Lockne marine-target impact structure. In The sedimentary record of meteorite impacts, edited by Evans K. R., Horton J. W., Jr., King D. T., Jr., and Morrow J. R. Geological Society of America Special Paper 437:4354, doi:10.1130/2008.2437(02).
  • Melosh H. J. 1989. Impact cratering—A geologic process. New York: Oxford University Press. p. 245.
  • Ormö J. and Lindström M. 2000. When a cosmic impact strikes the seabed. Geological Magazine 137:6780.
  • Ormö J. and Miyamoto H. 2002. Computer modelling of the water resurge at a marine impact: The Lockne crater, Sweden. Deep Sea Research II 49:983994.
  • Ormö J., Shuvalov V., and Lindström M. 2002. Numerical modeling for target water depth estimation of marine-target impact craters. Journal of Geophysical Research 107:3139, doi:10.1029/2002JE0018.
  • Ormö J., Sturkell E., and Lindström M. 2007. Sedimentological analysis of resurge deposits at the Lockne and Tvären craters: Clues to flow dynamics. Meteoritics & Planetary Science 42:19291944.
  • Ormö J., Sturkell E., Horton J. W., Jr, Powars D. S., and Edwards L. E. 2009. Comparison of clast frequency and size in the resurge deposits at the Chesapeake Bay impact structure (Eyreville and Langley cores): Clues to the resurge process. In The ICDP-USGS Deep Drilling Project in the Chesapeake Bay impact structure: Results from the Eyreville core holes, edited by Goh G. S., Koeberl C., Miller K. G., and Reimold W. U. Geological Society of America Special Paper 458. pp. 617632.
  • Ormö J., Hill A., and Self-Trail J. M. 2010a. A chemostratigraphic method to determine the end of impact related sedimentation at marine-target impact craters (Chesapeake Bay, Lockne, Tvären). Meteoritics & Planetary Science 45:12061224.
  • Ormö J., Lepinette A., Sturkell E., Lindström M., Housen K., and Holsapple K. 2010b. The water resurge at marine-target impact craters analyzed with a combination of low-velocity impact experiments and numerical simulation. In Large meteorite impacts and planetary evolution IV, edited by Gibson R. L. and Reimold W. U. Geological Society of America Special Paper 465. pp. 81102.
  • Ormö J., Rossi A. P., and Housen K. R. 2012. A new method to determine the direction of impact: Asymmetry of concentric impact craters as observed in the field (Lockne), on Mars, in experiments, and simulations. Meteoritics & Planetary Science, doi:10.1111/maps.12065.
  • Powars D. S. and Bruce T. S. 1999. The effects of the Chesapeake Bay impact crater on the geological framework and correlation of hydrogeologic units of the lower York-James Peninsula, Virginia. U.S. Geological Survey Professional Paper 1612. Washington, D.C.: United States Government Printing Office. 82 p.
  • Powars D. S., Bruce T. S., Edwards L. E., Gohn G. S., Self-Trail J. M., Weems R. E., Johnson G. H., Smith M. J., and McCartan C. T. 2005. Physical stratigraphy of the Upper Eocene to Quaternary postimpact section in the USGS-NASA Langley core, Hampton, Virginia. In Studies of the Chesapeake Bay impact structure—The USGS-NASA Langley corehole, Hampton, Virginia, and related coreholes and geophysical surveys, edited by Horton J. W., Jr., Powars D. S., and Gohn G. S. U.S. Geological Survey Professional Paper 1688. Washington, D.C.: United States Government Printing Office. pp. G1G44.
  • Puura V. and Suuroja K. 1992. Ordovician impact crater at Kärdla, Hiiuma Island, Estonia. Tectonophysics 216:143146.
  • Quaide W. L. and Oberbeck V. R. 1968. Thickness determinations of the lunar surface layer from lunar impact craters. Journal of Geophysical Research 73:52475270.
  • Shuvalov V. V. and Trubestkaya I. A. 2002. Numerical modeling of marine impacts. Solar System Research 36:417430.
  • Shuvalov V., Ormö J., and Lindström M. 2005. Hydrocode simulation of the Lockne marine target impact event. In Impact tectonics, edited by Koeberl C. and Henkel H. Berlin: Springer Verlag. pp. 405422.
  • Sturkell E. F. F. 1998a. The marine Lockne impact structure, Jämtland, Sweden: A review. Geologische Rundschau 87:253267.
  • Sturkell E. F. F. 1998b. Resurge morphology of the marine Lockne impact crater, Jämtland, central Sweden. Geological Magazine 135:121127.
  • Sturkell E. and Lindström M. 2004. The target peneplain of the Lockne impact. Meteoritics & Planetary Science 39:17211731.
  • Sturkell E. F. F. and Ormö J. 1998. Magnetometry of the marine, Ordovician Lockne impact structure, Jämtland, Sweden. Journal of Applied Geophysics 38:195207.
  • Sturkell E. F. F., Broman C., Forsberg P., and Torssander T. 1998. Impact-related hydrothermal activity in the Lockne impact structure, Jämtland, Sweden. European Journal of Mineralogy 10:589606.
  • Suuroja K., Suuroja S., All T., and Floden T. 2002. Kärdla (Hiiumaa Island, Estonia)—the buried and well-preserved Ordovician marine impact structure. Deep-Sea Research II 49:11211144.