SEARCH

SEARCH BY CITATION

References

  • Alexander C. M. O'D., Grossman J. N., Ebel D. S., and Ciesla, F. J. 2008. The formation conditions of chondrules and chondrites. Science 320:16171619.
  • Amelin Y., Kaltenbach A., Iizuka T., Stirling C. H., Ireland T. R., Petaev M., and Jacobsen S. B. 2010. U-Pb chronology of the solar system's oldest solids with variable 238U/235U. Earth and Planetary Science Letters 300:343350.
  • Baker J. A., Bizzarro M., Wittig N., Connelly J. N., and Haack H. 2005. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature 436:11271131.
  • Bizzarro M., Baker J. A., and Haack H. 2004. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 431:275278.
  • Bizzarro M., Paton C., Larsen K., Schiller M., Trinquier A., and Ulfbeck D. 2011. High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—Implications for the relative and absolute Mg-isotope composition of the bulk silicate Earth. Journal of Analytical Atomic Spectrometry 26:565577.
  • Bourdon B., Tipper E. T., Fitoussi C., and Stracke A. 2010. Chondritic Mg isotope composition of the Earth. Geochimica et Cosmochimica Acta 74:50695083.
  • Bouvier A. and Wadhwa M. 2010. The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geoscience 3:637641.
  • Bouvier A., Spivak-Birndorf L. J., Brennecka G. A., and Wadhwa M. 2011. New constraints on early solar system chronology from Al-Mg and U-Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochimica et Cosmochimica Acta 75:53105323.
  • Brearley A. J. 1996. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 137152.
  • Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. In Planetary materials, edited by Papike J. J. Washington, D.C.: Mineralogical Society of America. pp. 3.13.398.
  • Bunch T. E., Schultz P., Cassen P., Brownlee D., Podolak M., Lissauer J., Reynolds R., and Chang S. 1991. Are some chondrule rims formed by impact processes? Observations and experiments. Icarus 91:7692.
  • Catanzaro E. J., Murphy T. J., Garner E. L., and Shields W. R. 1966. Absolute isotopic abundance ratios and atomic weight of magnesium. Journal of Research of the National Bureau of Standards 70a:453458.
  • Chakrabarti R. and Jacobsen S. B. 2010. The isotopic composition of magnesium in the inner solar system. Earth and Planetary Science Letters 293:349358.
  • Clayton R. N. and Mayeda T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta 63:20892104.
  • Cuzzi J. N. and Alexander C. M. O'D. 2006. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature 441:483485.
  • De Leuw S., Rubin A. E., Schmitt A. K., and Wasson J. T. 2009. 53Mn-53Cr systematics of carbonates in CM chondrites: Implications for the timing and duration of aqueous alteration. Geochimica et Cosmochimica Acta 73:74337442.
  • Desch S. J. and Connolly H. C. 2002. A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science 37:183207.
  • Fedkin A. V., Grossman L., Ciesla F. J., and Simon S. B. 2012. Mineralogical and isotopic constraints on chondrule formation from shock wave thermal histories. Geochimica et Cosmochimica Acta 87:81116.
  • Galy A., Young E. D., Ash R. D., and O'Nions R. K. 2000. The formation of chondrules at high gas pressures in the solar nebula. Science 290:17511753.
  • Galy A., Bar-Matthews M., Halicz L., and O'Nions R. K. 2002. Mg isotopic composition of carbonate: Insight from speleothem formation. Earth and Planetary Science Letters 201:105115.
  • Georg R. B., Halliday A. N., Schauble E. A., and Reynolds B. C. 2007. Silicon in the Earth's core. Nature 447:11021106.
  • Gounelle M., Young E. D., Shahar A., Tonui E., and Kearsley A. 2007. Magnesium isotopic constraints on the origin of CBb chondrites. Earth and Planetary Science Letters 256:521533.
  • Grossman L., Ebel D. S., Simon S. B., Davis A. M., Richter F. M., and Parsad N. M. 2000. Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochimica et Cosmochimica Acta 64:28792894.
  • Grossman L., Fedkin A. V., and Simon S. B. 2012. Formation of the first oxidized iron in the solar system. Meteoritics & Planetary Science 47:21602169.
  • Handler M. R., Baker J. A., Schiller M., Bennett V. C., and Yaxley G. M. 2009. Magnesium stable isotope composition of Earth's upper mantle. Earth and Planetary Science Letters 282:306313.
  • Hewins R. H., Jones R. H., and Scott E. R. D. 1996. Chondrules and the protoplanetary disk. Cambridge: Cambridge University Press. 346 p.
  • Hewins R. H., Connolly H. C., Lofgren G. E., Jr., and Libourel G. 2005. Experimental constraints on chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conferernce Series 341. San Francisco: Astronomical Society of the Pacific. pp. 286316.
  • Hezel D. C. and Palme H. 2010. The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters 294:8593.
  • Hezel D. C., Needham A. W., Armytage R., Georg B., Abel R. L., Kurahashi E., Coles B. J., Rehkämper M., and Russell S. S. 2010. A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters 296:423433.
  • Huang F., Glessner J., Ianno A., Lundstrom C., and Zhang Z. 2009. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS. Chemical Geology 268:1523.
  • Jacobsen B., Yin Q.-Z., Moynier F., Amelin Y., Krot A. N., Nagashima K., Hutcheon I. D., and Palme H. 2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters 272:353364.
  • Jones R. H., Grossman J. N., and Rubin A. E. 2005. Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conferernce Series 341. San Francisco: Astronomical Society of the Pacific. pp. 251286.
  • Kita N. T., Nagahara H., Togashi S., and Morishita Y. 2000. A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules. Geochimica et Cosmochimica Acta 64:39133922.
  • Krot A. N., Scott E. R. D., and Zolensky M. E. 1995. Alteration and dehydration in the parent asteroid of Allende. Meteoritics & Planetary Science 30:530531.
  • Krot A. N., Amelin Y., Cassen P., and Meibom A. 2005a. Young chondrules in CB chondrites from a giant impact in the early solar system. Nature 436:989992.
  • Krot A. N., Yurimoto H., Hutcheon I. D., Glenn J., and MacPherson G. J. 2005b. Chronology of the early solar system from chondrule-bearing calcium-aluminium-rich inclusions. Nature 434:9981001.
  • Larsen K., Trinquier A., Paton C., Schiller M., Wielandt D., Ivanova M. A., Connelly J. N., Nordlund A., Krot A. N., and Bizzarro M. 2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. The Astrophysical Journal 735:L37L44.
  • Lee T., Papanastassiou D. A., and Wasserburg G. J. 1976. Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophysical Research Letters 3:109112.
  • Libourel G. and Chaussidon M. 2011. Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters 301:921.
  • Liu S.-A., Teng F.-Z., He Y., Ke S., and Li S. 2010. Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust. Earth and Planetary Science Letters 297:646654.
  • Molini-Velsko C., Mayeda T. K., and Clayton R. N. 1986. Isotopic composition of silicon in meteorites. Geochimica et Cosmochimica Acta 50:27192726.
  • Morris M. A. and Desch S. J. 2010. Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal 722:14741494.
  • Moynier F., Bouvier A., Blichert-Toft J., Telouk P., Gasperini D., and Albarède F. 2006. Europium isotopic variations in Allende CAIs and the nature of mass-dependent fractionation in the solar nebula. Geochimica et Cosmochimica Acta 70:42874294.
  • Moynier F., Agranier A., Hezel D. C., and Bouvier A. 2010. Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites. Earth and Planetary Science Letters 300:359366.
  • Patchett P. J. 1980. Sr isotopic fractionation in Allende chondrules: A reflection of solar nebular processes. Earth and Planetary Science Letters 50:181188.
  • Pogge von Strandmann P. A. E., Elliott T., Marschall H. R., Coath C., Lai Y.-J., Jeffcoate A. B., and Ionov D. A. 2011. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica et Cosmochimica Acta 75:52475268.
  • Richter F. M., Watson E. B., Mendybaev R. A., Teng F.-Z., and Janney P. E. 2008. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochimica et Cosmochimica Acta 72:206220.
  • Richter F. M., Dauphas N., and Teng F.-Z. 2009. Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion. Chemical Geology 258:92103.
  • Rubin A. E., Trigo-Rodríguez J. M., Huber H., and Wasson J. T. 2007. Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 71:23612382.
  • Saulnier S., Rollion-Bard C., Vigier N., and Chaussidon M. 2012. Mg isotope fractionation during calcite precipitation: An experimental study. Geochimica et Cosmochimica Acta 91:7591.
  • Schiller M., Baker J. A., and Bizzarro M. 2010. 26Al-26Mg dating of asteroidal magmatism in the young solar system. Geochimica et Cosmochimica Acta 74:48444864.
  • Spivak-Birndorf L., Wadhwa M., and Janney P. E. 2009. 26Al–26Mg systematics in D'Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochimica et Cosmochimica Acta 73:52025211.
  • Teng F.-Z., Wadhwa M., and Helz R. T. 2007. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth and Planetary Science Letters 261:8492.
  • Teng F.-Z., Li W.-Y., Ke S., Marty B., Dauphas N., Huang S., Wu F.-Y., and Pourmand A. 2010a. Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta 74:41504166.
  • Teng F.-Z., Li W.-Y., Rudnick R. L., and Gardner L. R. 2010b. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters 300:6371.
  • Teng F.-Z., Dauphas N., Helz R. T., Gao S., and Huang S. 2011. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth and Planetary Science Letters 308:317324.
  • Thrane K., Bizzarro M., and Baker J. A. 2006. Extremely brief formation interval for refractory inclusions and uniform distribution of 26Al in the early solar system. The Astrophysical Journal 646:L159L162.
  • Tipper E. T., Galy A., and Bickle M. J. 2006. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle. Earth and Planetary Science Letters 247:267279.
  • Tipper E. T., Louvat P., Capmas F., Galy A., and Gaillardet J. 2008. Accuracy of stable Mg and Ca isotope data obtained by MC-ICP-MS using the standard addition method. Chemical Geology 257:6575.
  • Tipper E. T., Gaillardet J., Louvat P., Capmas F., and White A. F. 2010. Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California. Geochimica et Cosmochimica Acta 74:38833896.
  • Villeneuve J., Chaussidon M., and Libourel G. 2009. Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science 325:985988.
  • Wick M. J. and Jones R. H. 2012. Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs. Geochimica et Cosmochimica Acta 98:140159.
  • Wiechert U. and Halliday A. N. 2007. Non-chondritic magnesium and the origins of the inner terrestrial planets. Earth and Planetary Science Letters 256:360371.
  • Wimpenny J., Gíslason S. R., James R. H., Gannoun A., Pogge Von Strandmann P. A. E., and Burton K. W. 2010. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochimica et Cosmochimica Acta 74:52595279.
  • Wood J. A. 1963. On the origin of chondrules and chondrites. Icarus 2:152180.
  • Yang W., Teng F.-Z., and Zhang H.-F. 2009. Chondritic magnesium isotopic composition of the terrestrial mantle: A case study of peridotite xenoliths from the North China craton. Earth and Planetary Science Letters 288:475482.
  • Young E. D. and Galy A. 2004. The isotope geochemistry and cosmochemistry of magnesium. In Geochemistry of non-traditional stable isotopes, edited by Johnson C. L., Beard B. L., and Albarède F. Washington, D.C.: Mineralogical Society of America and Geochemical Society. pp. 197230.
  • Young E. D., Ash R. D., Galy A., and Belshaw N. S. 2002a. Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes. Geochimica et Cosmochimica Acta 66:683698.
  • Young E. D., Galy A., and Nagahara H. 2002b. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta 66:10951104.
  • Young E. D., Tonui E., Manning C. E., Schauble E., and Macris C. A. 2009. Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth. Earth and Planetary Science Letters 288:524533.
  • Zanda B. 2004. Chondrules. Earth and Planetary Science Letters 224:117.