SEARCH

SEARCH BY CITATION

References

  • Burton A. S., Glavin D. P., Callahan M. P., Dworkin J. P., Jenniskens P., and Shaddad M. H. 2011. Heterogeneous distributions of amino acids provide evidence of multiple sources within the Almahata Sitta parent body, asteroid 2008 TC3. Meteoritics & Planetary Science 46:17031712.
  • Burton A. S., Elsila J. E., Callahan M. P., Martin M. G., Glavin D. P., Johnson N. M., and Dworkin J. P. 2012a. A propensity for n-ω-amino acids in thermally altered Antarctic meteorites. Meteoritics & Planetary Science 47:374386.
  • Burton A. S., Stern J. C., Elsila J. E., Glavin D. P., and Dworkin J. P. 2012b. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chemical Society Reviews 41:54595472.
  • Callahan M. P., Smith K. E., Cleaves H. J. II, Ruzicka J., Stern J. C., Glavin D. P., House C. H., and Dworkin J. P. 2011. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Academy of Sciences 108:1399513998.
  • Chyba C. and Sagan C. 1992. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 355:125132.
  • Cooper G. W. and Cronin J. R. 1995. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: Hydrolyzable derivatives of amino acids and other carboxylic acids. Geochimica et Cosmochimica Acta 59:10031015.
  • Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham K., and Garrel L. 2001. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879883.
  • Cronin J. R. and Pizzarello S. 1983. Amino acids in meteorites. Advances in Space Research: The Official Journal of the Committee on Space Research (COSPAR) 3:518.
  • Cronin J. R. and Pizzarello S. 1997. Enantiomeric excesses in meteoritic amino acids. Science 275:951955.
  • Dodd R. T. 1981. Meteorites, a petrologic-chemical synthesis. Cambridge, UK: Cambridge University Press.
  • Ehrenfreund P., Glavin D. P., Botta O., Cooper G., and Bada J. L. 2001. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites. Proceedings of the National Academy of Sciences 98:21382141.
  • Elsila J. E., Glavin D. P., and Dworkin J. P. 2009. Cometary glycine detected in samples returned by Stardust. Meteoritics & Planetary Science 44:13231330.
  • Elsila J. E., Callahan M. P., Glavin D. P., Dworkin J. P., and Brückner H. 2011. Distribution and stable isotopic composition of amino acids from fungal peptaibiotics: Assessing the potential for meteoritic contamination. Astrobiology 11:123133.
  • Elsila J. E., Charnley S. B., Burton A. S., Glavin D. P., and Dworkin J. P. 2012. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways. Meteoritics & Planetary Science 47:15171536.
  • Getoff N. and Schenck G. 1967. On the formation of amino acids by gamma-ray-induced carboxylation of amines in aqueous solutions. Radiation Research 31:486505.
  • Getoff N. and Schenck G. O. 1968. 60Co-γ-ray induced formation of sulfur-containing amino acids in aqueous solutions. In Radiation chemistry, edited by Hart E. J. Washington, D.C.: American Chemical Society. pp. 337344.
  • Glavin D. P. and Dworkin J. P. 2009. Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy 106:54875492.
  • Glavin D. P., Dworkin J. P., Aubrey A., Botta O., Doty J. H., Martins Z., and Bada J. L. 2006. Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteoritics & Planetary Science 41:889902.
  • Glavin D. P., Aubrey A. D., Callahan M. P., Dworkin J. P., Elsila J. E., Parker E. T., Bada J. L., Jenniskens P., and Shaddad M. H. 2010a. Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteoritics & Planetary Science 45:16951709.
  • Glavin D. P., Callahan M. P., Dworkin J. P., and Elsila J. E. 2010b. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteoritics & Planetary Science 45:19481972.
  • Glavin D. P., Elsila J. E., Burton A. S., Callahan M. P., Dworkin J. P., Hilts R. W., and Herd C. D. K. 2012. Unusual nonterrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite. Meteoritics & Planetary Science 47:13471364.
  • Gounelle M., Spurný P., and Bland P. A. 2006. The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteoritics & Planetary Science 41:135150.
  • Greshake A., Krot A. N., Meibom A., Weisberg M. K., Zolensky M. E., and Keil K. 2002. Heavily hydrated lithic clasts in CH chondrites and the related, metal-rich chondrites Queen Alexandra Range 94411 and Hammadah al Hamra 237. Meteoritics & Planetary Science 37:281293.
  • Hayatsu R., Studier M. H., and Anders E. 1971. Origin of organic matter in early solar system—IV. Amino acids: Confirmation of catalytic synthesis by mass spectrometry. Geochimica et Cosmochimica Acta 35:939951.
  • Herd C. D. K., Blinova A., Simkus D. N., Huang Y., Tarozo R., Alexander C. M. O'D., Gyngard F., Nittler L. R., Cody G. D., Fogel M. L., Kebukawa Y., Kilcoyne A. L., Hilts R. W., Slater G. F., Glavin D. P., Dworkin J. P., Callahan M. P., Elsila J. E., De Gregorio B. T., and Stroud R. M. 2011. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 332:13041307.
  • Huber C. and Wächtershäuser G. 2003. Primordial reductive amination revisited. Tetrahedron Letters 44:16951697.
  • Jungclaus G. A., Yuen G. U., Moore C. B., and Lawless J. G. 1976. Evidence for the presence of low molecular weight alcohols and carbonyl compounds in the Murchison meteorite. Meteoritics 11:231237.
  • Kvenvolden K., Lawless J., Pering K., Peterson E., Flores J., Ponnamperuma C., Kaplan I. R., and Moore C. 1970. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923926.
  • Lancet M. S. and Anders E. 1970. Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170:980982.
  • Martins Z., Alexander C. M. O'D., Orzechowska G. E., Fogel M. L., and Ehrenfreund P. 2007. Indigenous amino acids in primitive CR meteorites. Meteoritics & Planetary Science 42:21252136.
  • Miller S. L. 1953. A production of amino acids under possible primitive earth conditions. Science 117:528529.
  • Monroe A. A. and Pizzarello S. 2011. The soluble organic compounds of the Bells meteorite: Not a unique or unusual composition. Geochimica et Cosmochimica Acta 75:75857595.
  • Peltzer E. T., Bada J. L., Schlesinger G., and Miller S. L. 1984. The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Advances in Space Research 4:6974.
  • Pizzarello S. 2012. Catalytic syntheses of amino acids and their significance for nebular and planetary chemistry. Meteoritics & Planetary Science 47:12911296.
  • Pizzarello S. and Cronin J. 2000. Non-racemic amino acids in the Murray and Murchison meteorites. Geochimica et Cosmochimica Acta 64:329338.
  • Pizzarello S. and Holmes W. 2009. Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules. Geochimica et Cosmochimica Acta 73:21502162.
  • Pizzarello S., and Shock E. 2010. The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harbor Perspectives in Biology 2:a002105.
  • Pizzarello S., Zolensky M., and Turk K. A. 2003. Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochimica et Cosmochimica Acta 67:15891595.
  • Pizzarello S., Cooper G., and Flynn G. 2006. The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In Meteorites and the early solar system II, edited by Lauretta D., Leshin L., and McSween H. Jr. Tucson, Arizona: The University of Arizona Press. pp. 625651.
  • Pizzarello S., Schrader D. L., Monroe A. A., and Lauretta D. S. 2012. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proceedings of the National Academy of Sciences USA 109:1194911954.
  • Scott J. H., O'Brien D. M., Emerson D., Sun H., McDonald G. D., Salgado A., and Fogel M. L. 2006. An examination of the carbon isotope effects associated with amino acid biosynthesis. Astrobiology 6:867880.
  • Weisberg M., McCoy T., and Krot A. 2006. Systematics and evaluation of meteorite classification. In Meteorites and the early solar system II, 2nd ed., edited by Lauretta D. and McSween H. J. Tucson, Arizona: The University of Arizona Press. pp. 1952.
  • Wolman Y., Haverland W. J., and Miller S. L. 1972. Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proceedings of the National Academy of Sciences 69:809811.
  • Yuen G. U. and Kvenvolden K. A. 1973. Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246:301303.