SEARCH

SEARCH BY CITATION

References

  • Aléon J., Krot A. N., and McKeegan K. D. 2002. Calcium-aluminum-rich inclusions and amoeboid olivine aggregates from the CR carbonaceous chondrites. Meteoritics & Planetary Science 37:17291755.
  • Alexander C. M. O'D. 1994. Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors. Geochimica et Cosmochimica Acta 58:34513467.
  • Alexander C. M. O'D., Grossman J. N., Ebel D. S., and Ciesla F. J. 2008. The formation conditions of chondrules and chondrites. Science 320:16171619.
  • Allen J. M., Grossman L., Davis A. M., and Hutchison I. D. 1978. Mineralogy, textures and mode of formation of a hibonite-bearing Allende inclusion. Proceedings, 9th Lunar and Planetary Science Conference. pp. 12091233.
  • Armstrong J. T., Meeker G. P., Huneke J. C., and Wasserburg G. J. 1982. The Blue Angel: I. The mineralogy and petrology of a hibonite inclusion from the Murchison meteorite. Geochimica et Cosmochimica Acta 46:575595.
  • Blatt H., Tracy R. J., and Owens B. E. 2006. Petrology: Igneous, sedimentary and metamorphic, 3rd ed. New York: Freeman. 503 p.
  • Boss A. P. 2004. Convective cooling of protoplanetary disks and rapid giant planet formation. The Astrophysical Journal 610:456463.
  • Brandstätter F., Bukovanská M., and Kurat G. 2003. NWA 1559: Another anomalous CK3 chondrite? (abstract). Meteoritics & Planetary Science 38:A63.
  • Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. In Planetary materials, edited by Papike J. J. Reviews in Mineralogy, vol. 36. Washington, D.C.: Mineralogical Society of America. pp. 3-13-398.
  • Chaussidon M., Robert F., and McKeegan K. D. 2006. Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochimica et Cosmochimica Acta 70:224245.
  • Cherniak D. J. 2003. Silicon self-diffusion in single-crystal natural quartz and feldspar. Chemical Geology 214:655668.
  • Chizmadia L. J., Rubin A. E., and Wasson J. T. 2002. Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: Relationships to parent body aqueous alteration. Meteoritics & Planetary Science 37:17811796.
  • Ciesla F. J. 2010. The distributions and ages of refractory objects in the solar nebula. Icarus 208:455467.
  • Clayton R. N. and Mayeda T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta 63:20892104.
  • Connolly H. C., Jones B. D., and Hewins R. H. 1998. The flash melting of chondrules: An experimental investigation into the melting history and physical nature of chondrule precursors. Geochimica et Cosmochimica Acta 62:27252735.
  • Cosarinsky M., Leshin L. A., MacPherson G. J., Guan Y., and Krot A. N. 2008. Chemical and oxygen isotopic compositions of accretionary rim and matrix olivine in CV chondrites: Constraints on the evolution of nebular dust. Geochimica et Cosmochimica Acta 72:18871913.
  • Cuzzi J. N., Davis S. S., and Dobrovolskis A. R. 2003. Blowing in the wind. II. Creation and redistribution of refractory inclusions in a turbulent protoplanetary nebula. Icarus 166:385402.
  • Donaldson C. H. 1976. An experimental investigation of olivine morphology. Contributions to Mineralogy and Petrology 57:187213.
  • Ebel D. S., Weisberg M. K., and Beckett J. R. 2012. Thermochemical stability of low-iron, manganese-enriched olivine in astrophysical environments. Meteoritics & Planetary Science 47:585593.
  • Geiger T. and Bischoff A. 1995. Formation of opaque minerals in CK chondrites. Planetary and Space Science 43:485498.
  • Gooding J. L., Keil K., Fukuoka T., and Schmitt R. A. 1980. Elemental abundances in chondrules from unequilibrated chondrites: Evidence for chondrule origin by melting of pre-existing materials. Earth and Planetary Science Letters 50:171180.
  • Gounelle M., Shu F. H., Shang H., Glassgold A. E., Rehm K. E., and Lee T. 2001. Extinct radioactivities and protosolar cosmic rays: Self-shielding and light elements. The Astrophysical Journal 548:10511070.
  • Gounelle M., Shu F. H., Shang H., Glassgold A. E., Rehm K. E., and Lee T. 2006. The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. The Astrophysical Journal 640:11631170.
  • Greenwood R. C., Franchi I. A., Kearsley A. T., and Alard O. 2010. The relationship between CK and CV chondrites. Geochimica et Cosmochimica Acta 74:16841705.
  • Grossman L. 1975. Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta 39:433454.
  • Grossman L., and Steele I. M. 1976. Amoeboid olivine aggregates in the Allende meteorite. Geochimica et Cosmochimica Acta 40:149155.
  • Grossman J. N. and Wasson J. T. 1985. The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta 49:925939.
  • Grove T. L., Ferry J. M., and Spear F. S. 1983. Phase transitions and decomposition relations in calcic plagioclase. American Mineralogist 68:4159.
  • Hart S. R. 1981. Diffusion compensation in natural silicates. Geochimica et Cosmochimica Acta 45:279291.
  • Hashimoto A. and Grossman L. 1987. Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite. Geochimica et Cosmochimica Acta 51:16851704.
  • Hewins R. H., Connolly H. C., Lofgren G. E., and Libourel G. 2005. Experimental constraints on chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D. and Reipurth B. Astronomical Society of the Pacific Conference Series 341:286316.
  • Hua X., Adam J., Palme H., and El Goresy A. 1988. Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: Types, compositional profiles and constraints of their formation. Geochimica et Cosmochimica Acta 52:13891408.
  • Imai H. and Yurimoto H. 2003. Oxygen isotopic distribution in an amoeboid olivine aggregate from the Allende CV chondrite: Primary and secondary processes. Geochimica et Cosmochimica Acta 67:765772.
  • Isa J., Rubin A. E., and Wasson J. T. 2012. Bulk compositions of CV and CK chondrites: Support for a close relationship (abstract #2809). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Itoh S., Russell S. S., and Yurimoto H. 2007. Oxygen and magnesium isotopic compositions of amoeboid olivine aggregates from the Semarkona LL3.0 chondrite. Meteoritics & Planetary Science 42:12411247.
  • Jacquet E., Fromang S., and Gounelle M. 2011. Radial transport of refractory inclusions and their preservation in the dead zone. Astronomy & Astrophysics 526:14.
  • Jones R. H. 1996. Relict grains in chondrules: Evidence for chondrule recycling. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 163172.
  • Jones R. H., Grossman J. N., and Rubin A. E. 2005. Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. Astronomical Society of the Pacific Conference Series 341. pp. 251285.
  • Kallemeyn G. W., Rubin A. E., and Wasson J. T. 1991. The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites. Geochimica et Cosmochimica Acta 55:881892.
  • Keller L. P., Clark J. C., Lewis C. F., and Moore C. B. 1992. Maralinga, a metamorphosed carbonaceous chondrite found in Australia. Meteoritics 27:8791.
  • Komatsu M. 2003. Mineralogical study of amoeboid olivine aggregates in CV3 chondrites: Implications for their origin and relation to chondrules. Ph.D. thesis, University of Tokyo, Tokyo, Japan. 197 p.
  • Komatsu M., Krot A. N., Petaev M. I., Ulyanov A. A., Keil K., and Miyamoto M. 2001. Mineralogy and petrography of amoeboid olivine aggregates from the reduced CV3 chondrites Efremovka, Leoville and Vigarano: Products of nebular condensation, accretion and annealing. Meteoritics & Planetary Science 36:629641.
  • Komatsu M., Mikouchi T., and Miyamoto M. 2009. High-temperature annealing of amoeboid olivine aggregates: Heating experiments on olivine-anorthite mixtures. Polar Science 3:3155.
  • Kornacki A. S. and Wood J. A. 1984. Petrography and classification of Ca-Al-rich and olivine-rich inclusions in the Allende CV3 chondrite. Proceedings, 14th Lunar and Planetary Science Conference. pp. B573B587.
  • Kornacki A. S., Cohen R. E., and Wood J. A. 1983. Petrography and classification of refractory inclusions in the Allende and Mokoia CV3 chondrites. Proceedings of the Eighth Symposium on Antarctic Meteorites. pp. 4560.
  • Kovach H. A. and Jones R. H. 2010. Feldspar in type 4–6 ordinary chondrites: Metamorphic processing on the H and LL chondrite parent bodies. Meteoritics & Planetary Science 45:246264.
  • Krot A. N. and Rubin A. E. 1996. Microchondrule-bearing chondrule rims: Constraints on chondrule formation. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 181184.
  • Krot A. N. and Wasson J. T. 1995. Igneous rims on low-FeO and high-FeO chondrules in ordinary chondrites. Geochimica et Cosmochimica Acta 59:49514966.
  • Krot A. N., Rubin A. E., Keil K., and Wasson J. T. 1997. Microchondrules in ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta 61:463473.
  • Krot A. N., Petaev M. I., Scott E. R. D., Choi B.-G., Zolensky M. E., and Keil K. 1998a. Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteoritics & Planetary Science 33:10651085.
  • Krot A. N., Zolensky M. E., Keil K., Scott E. R. D., and Nakamura K. 1998b. Secondary Ca-Fe-rich minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. Meteoritics & Planetary Science 33:623645.
  • Krot A. N., Meibom A., Weisberg M. K., and Keil K. 2002. The CR chondrite clan: Implications for early solar system processes. Meteoritics & Planetary Science 37:14511490.
  • Krot A. N., Petaev M. I., Russell S. S., Itoh S., Fagan T. J., Yurimoto H., Chizmadia L., Weisberg M. K., Komatsu M., Ulyanov A. A., and Keil K. 2004a. Amoeboid olivine aggregates and related objects in carbonaceous chondrites: Records of nebular and asteroid processes. Chemie der Erde 64:185239.
  • Krot A. N., Petaev M. I., and Yurimoto H. 2004b. Amoeboid olivine aggregates with low-Ca pyroxenes: A genetic link between refractory inclusions and chondrules? Geochimica et Cosmochimica Acta 68:19231941.
  • Krot A. N., Fagan T. J., Keil K., McKeegan K. D., Sahijpal S., Hutcheon I. D., Petaev M. I., and Yurimoto H. 2004c. Ca, Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. Mineralogy and petrology. Geochimica et Cosmochimica Acta 68:21672184.
  • Krot A. N., Hutcheon I. D., Brearley A. J., Pravdivtseva O. V., Petaev M. I., and Hohenberg C. M. 2005. Timescales and settings for alteration of chondritic meteorites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Tucson, Arizona: The University of Arizona Press. pp. 525553.
  • MacPherson G. J. 2005. Calcium-aluminum-rich inclusions in chondritic meteorites. In Meteorites, comets, and planets, edited by Davis A. M. Treatise on Geochemistry, vol. 1. Oxford: Elsevier. pp. 201246.
  • MacPherson G. J. and Grossman L. 1984. Fluffy type-A inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta 48:2946.
  • MacPherson G. J., Grossman L., Allen J. M., and Beckett J. R. 1981. Origin of rims on coarse-grained inclusions in the Allende meteorite. Proceedings, 12th Lunar and Planetary Science Conference. pp. 10791091.
  • MacPherson G. J., Bar-Matthews M., Tanaka T., Olsen E., and Grossman L. 1983. Refractory inclusions in the Murchison meteorite. Geochimica et Cosmochimica Acta 47:823839.
  • MacPherson G. J., Hashimoto A., and Grossman L. 1985. Accretionary rims on inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta 49:22672279.
  • MacPherson G. J., Wark D. A., and Armstrong J. T. 1988. Primitive material surviving in chondrites: Refractory inclusions. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 746807.
  • MacPherson G. J., Huss G. R., and Davis A. M. 2003. Extinct 10Be in type A CAIs from CV chondrites. Geochimica et Cosmochimica Acta 67:31653179.
  • Marhas K. K., Goswami J. N., and Davis A. M. 2002. Short-lived nuclides in hibonite grains from Murchison: Evidence for solar system evolution. Science 298:21822185.
  • McKeegan K. D., Chaussidon M., and Robert F. 2000. Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science 289:13341337.
  • McSween H. Y. 1977a. Chemical and petrographic constraints on the origin of chondrules and inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Acta 41:18431860.
  • McSween H. Y. 1977b. Carbonaceous chondrites of the Ornans type: A metamorphic sequence. Geochimica et Cosmochimica Acta 41:477491.
  • McSween H. Y. 1977c. Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta 41:17771790.
  • Morse S. A. 1984. Cation diffusion in plagioclase feldspar. Science 225:504505.
  • Neff K. E. and Righter K. 2006. Opaque assemblages in CK and CV carbonaceous chondrites (abstract #1320). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Nomura K. and Miyamoto M. 1998. Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: Implications for aqueous alteration in parent asteroids. Geochimica et Cosmochimica Acta 62:35753588.
  • Peck J. A. and Wood J. A. 1987. The origin of ferrous zoning in Allende chondrule olivines. Geochimica et Cosmochimica Acta 51:15031510.
  • Prinz M., Nehru C. E., Weisberg M. K., Delaney J. S., Yanai K., and Kojima H. 1984. H chondritic clasts in a Yamato L6 chondrite: Implications for metamorphism (abstract). Meteoritics 19:292293.
  • Rubin A. E. 1984a. Coarse-grained chondrule rims in type 3 chondrites. Geochimica et Cosmochimica Acta 48:17791789.
  • Rubin A. E. 1984b. Manganiferous orthopyroxene and olivine in the Allende meteorite. American Mineralogist 69:880888.
  • Rubin A. E. 1992. A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites. Geochimica et Cosmochimica Acta 56:17051714.
  • Rubin A. E. 1993. Magnetite-sulfide chondrules and nodules in CK carbonaceous chondrites: Implications for the timing of CK oxidation. Meteoritics 28:130135.
  • Rubin A. E. 1998. Correlated petrologic and geochemical characteristics of CO3 chondrites. Meteoritics & Planetary Science 33:385391.
  • Rubin A. E. 2000. Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Science Reviews 50:327.
  • Rubin A. E. 2004. Aluminian low-Ca pyroxene in a Ca-Al-rich chondrule from the Semarkona meteorite. American Mineralogist 89:867872.
  • Rubin A. E. 2007. Petrography of refractory inclusions in CM2.6 QUE 97990 and the origin of melilite-free spinel inclusions in CM chondrites. Meteoritics & Planetary Science 42:17111726.
  • Rubin A. E. 2010. Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta 74:48074828.
  • Rubin A. E. 2011. Origin of the differences in refractory-lithophile-element abundances among chondrite groups. Icarus 213:547558.
  • Rubin A. E. 2012. A new model for the origin of type-B and fluffy type-A CAIs: Analogies to remelted compound chondrules. Meteoritics & Planetary Science 47:10621074.
  • Rubin A. E. and Wasson J. T. 1987. Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite: Origin, interrelationships and possible precursor components. Geochimica et Cosmochimica Acta 51:19231937.
  • Rubin A. E. and Wasson J. T. 2005. Non-spherical lobate chondrules in CO3.0 Y-81020: General implications for the formation of low-FeO porphyritic chondrules in CO chondrites. Geochimica et Cosmochimica Acta 69:211220.
  • Rubin A. E., Wasson J. T., Clayton R. N., and Mayeda T. K. 1990. Oxygen isotopes in chondrules and coarse-grained chondrule rims from the Allende meteorite. Earth and Planetary Science Letters 96:247255.
  • Russell S. S., Krot A. N., Huss G. R., Keil K., Itoh S., Yurimoto H., and MacPherson G. J. 2005. The genetic relationship between refractory inclusions and chondrules. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. Astronomical Society of the Pacific Conference Series 341:317350.
  • Schaal R. B., Hörz F., Thompson T. D., and Bauer J. F. 1979. Shock metamorphism of granulated lunar basalt. Proceedings, 10th Lunar and Planetary Science Conference. pp. 25472571.
  • Scott E. R. D. and Taylor G. J. 1983. Chondrules and other components in C, O, and E chondrites: Similarities in their properties and origins. Proceedings, 14th Lunar and Planetary Science Conference. pp. B275B286.
  • Sheng Y. J., Wasserburg G. J., and Hutcheon I. D. 1992. Self-diffusion of magnesium in spinel and in equilibrated melts: Constraints on flash heating of silicates. Geochimica et Cosmochimica Acta 56:25352546.
  • Shu F. H., Shang H., Gounelle M., Glassgold A. E., and Lee T. 2001. The origin of chondrules and refractory inclusions in chondritic meteorites. The Astrophysical Journal 548:10291050.
  • Sugiura N., Shuzou Y., and Ulyanov A. 2001. Beryllium-boron and aluminum-magnesium chronology of calcium-aluminum-rich inclusions in CV chondrites. Meteoritics & Planetary Science 36:13971408.
  • Sugiura N., Petaev M. I., Kimura M., Miyazaki A., and Hiyagon H. 2009. Nebular history of amoeboid olivine aggregates. Meteoritics & Planetary Science 44:559572.
  • Tomeoka K. and Itoh D. 2004. Sodium-metasomatism in chondrules in CO3 chondrites: Relationship to parent body thermal metamorphism. Meteoritics & Planetary Science 39:13591373.
  • Wark D. A. 1981. Alteration and metasomatism of Allende Ca-Al-rich materials (abstract). 12th Lunar and Planetary Science Conference. pp. 11451147.
  • Wasson J. T. 1988. The building stones of the planets. In Mercury, edited by Vilas F., Chapman C. R., and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 622650.
  • Wasson J. T. 1993. Constraints on chondrule origins. Meteoritics 28:1328.
  • Wasson J. T. 1996. Chondrule formation: Energetics and length scales. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 4554.
  • Wasson J. T. 2000. Oxygen-isotopic evolution of the solar nebula. Reviews of Geophysics 38:491512.
  • Wasson J. T., Krot A. N., Lee M. S., and Rubin A. E. 1995. Compound chondrules. Geochimica et Cosmochimica Acta 59:18471869.
  • Weber D. and Bischoff A. 1997. Refractory inclusions in the CR chondrite Acfer 059–El Djouf 001: Petrology, chemical composition, and relationship to inclusion populations in other types of carbonaceous chondrites. Chemie der Erde 57:124.
  • Weisberg M. K., Prinz M., Clayton R. N., and Mayeda T. K. 1997. CV3 chondrites: three subgroups, not two (abstract). Meteoritics & Planetary Science 32:A138A139.
  • Weisberg M. K., Connolly H. C., and Ebel D. S. 2004. Petrology and origin of amoeboid olivine aggregates in CR chondrites. Meteoritics & Planetary Science 39:17411753.
  • Weisberg M. K., Ebel D. S., Connolly H. C., Kita N. T., and Ushikubo T. 2011. Petrology and oxygen isotope compositions of chondrules in E3 chondrites. Geochimica et Cosmochimica Acta 75:65566569.
  • Wood J. A. 2004. Formation of chondritic refractory inclusions: The astrophysical setting. Geochimica et Cosmochimica Acta 68:40074021.