SEARCH

SEARCH BY CITATION

References

  • Agee C. B. and Draper D. S. 2005. High pressure melting of H-chondrite: A match for the Martian basalt source mantle (abstract #1434). 36th Lunar and Planetary Science Conference. CD-ROM.
  • Asimow P. D. and Ghiorso M. S. 1998. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist 83:11271132.
  • Asimow P. D., Dixon J. E., and Langmuir C. H. 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems 5:Q01E16.
  • Balta J. B. and McSween H. Y. 2012. High silica contents in Martian basalts and its relationship to magmatic water. (abstract #1190). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Basu S. A., Goodrich C. A., Liu Y., Day J. M. D., and Taylor L. A. 2011. Evidence for heterogeneous enriched shergottite mantle sources in Mars from olivine-hosted melt inclusions in Larkman Nunatak 06319. Geochimica et Cosmochimica Acta 75:68036820.
  • Beck P., Barrat J. A., Gillet P., Wadhwa M., Franchi I. A., Greenwood R. C., Bohn M., Cotten J., de Moortele B. V., and Reynard B. 2006. Petrography and geochemistry of the chassignite Northwest Africa 2737 (NWA 2737). Geochimica et Cosmochimica Acta 70:21272139.
  • Bläß U. W., Langenhorst F., and McCammon C. 2010. Microstructural investigations on strongly stained olivines of the chassignite NWA 2737 and implications for its shock history. Earth and Planetary Science Letters 300:255263.
  • Boctor N. Z., Alexander C. M. O'D., Wang J., and Hauri E. 2003. The sources of water in Martian meteorites: Clues from hydrogen isotopes. Geochimica et Cosmochimica Acta 67:39713989.
  • Borg L. E. and Draper D. S. 2003. A petrogentic model for the origin and compositional variation of the Martian basaltic meteorites. Meteoritics & Planetary Science 38:17131731.
  • Bunch T., Irving A., Wittke J., Rumble D., Korotev R., Gellissen M., and Palme H. 2009. Petrology and composition of Northwest Africa 2990: A new type of fine-grained, enriched, olivine-phyric shergottite (abstract #2274). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Cherniak D. J. 2010. REE diffusion in olivine. American Mineralogist 95:362368, doi:10.2138/am.2010.3345.
  • Danni J. C., Holzheid A. H., Grove T. L., and McSween H. Y. 2001. Phase equilibria of the Shergotty meteorite: Constraints on pre-eruptive water contents of Martian magmas and fractional crystallization under hydrous conditions. Meteoritics & Planetary Science 36:793806.
  • Danyushevsky L. V., Della-Pasqua F. N., and Sokolov S. 2000. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications. Contributions to Mineralogy and Petrology 138:6883.
  • Filiberto J. 2008. Experimental constraints on the parental liquid of the Chassigny meteorite: A possible link between the Chassigny meteorite and a Martian Gusev basalt. Geochimica et Cosmochimica Acta 72:690701.
  • Filiberto J. and Dasgupta R. 2011. Fe2+-Mg partitioning between olivine and basatic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth and Planetary Science Letters 304:527537.
  • Filiberto J. and Treiman A. H. 2009. Martain magmas contained abundant chlorine, but little water. Geology 37:10871090.
  • Floran R. J., Prinz M., Hiava P. F., Keil K., Nehru C. E., and Hinthorne J. R. 1978. The Chassigny meteorites: A cumulate dunite with hydrous amphibole-bearing melt inclusions. Geochimica et Cosmochimica Acta 42:12131229.
  • Gaetani G. A. and Watson E. B. 2002. Modeling the major element evolution of olivine-hosted melt inclusions. Chemical Geology 183:2541.
  • Gellert R., Rieder R., Bruckner J., Clark B. C., Dreibus G., Klingelhofer G., Lugmair G., Ming D. W., Wänke H., Yen A., Zipfel J., and Squyres S. W. 2006. Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research-Planets 111:E02S05, doi:10.1029/2005JE002555.
  • Ghiorso M. S. and Sack R. O. 1995. Chemical mass-transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contributions to Mineralogy and Petrology 119:197212.
  • Ghiorso M. S., Hirschmann M. M., Reiners P. W., and Kress V. C., III. 2002. The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry, Geophysics, Geosystems 3:1030.
  • Goodrich C. A. 2003. Petrogenesis of olivine-phyric shergottites Sayh Al Uhaymir 005 and Elephant Moraine A79001 lithology A. Geochimica Et Cosmochimica Acta 67:37353772.
  • Greshake A., Fritz J., and Stöffler D. 2004. Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta 68:23592377.
  • Gross J., Treiman A., Filiberto J., and Herd C. 2011. Primitive olivine-phyric shergottite NWA 5789: Petrography, mineral chemistry and cooling history imply a magma similar to Yamato 980459. Meteoritics & Planetary Science 46:116133, doi:10.1111/j.1945-5100.2010.01152.x.
  • Hale V. P. S., McSween H. Y., and McKay G. A. 1999. Re-evaluation of intercumulus liquid composition and oxidation state for the Shergotty meteorite. Geochimica et Cosmochimica Acta 63:14591470.
  • Harvey R. P. and McSween H. Y. 1992. The parent magma of the nakhlite meteorites: Clues from melt inclusions. Earth and Planetary Science Letters 111:467482.
  • Harvey R. P., Wadhwa M., McSween H. Y., and Crozaz G. 1993. Petrology, mineral chemistry, and petrogenesis of Antarctic shergottite LEW88516. Geochimica et Cosmochimica Acta 57:47694783.
  • Jerram D. A., Cheadle M. J., and Philpotts A. J. 2003. Quantifying the building blocks of igneous rocks: Are clustered crystal frameworks the foundation? Journal of Petrology 44:20332051.
  • Johnson M. C., Rutherford M. J., and Hess P. C. 1991. Chassigny petrogenesis–melt compositions, intensive parameters, and water contents of Martian (?) magmas. Geochimica et Cosmochimica Acta 55:349366.
  • Kent A. J. 2008. Melt inclusions in basaltic and related volcanic rocks. Reviews in Mineralogy and Geochemistry, 69:273331.
  • Kring D. A., Gleason J. D., Swindle T. D., Nishiizumi K., Caffee M. W., Hill D. H., Jull A. J. T., and Boynton W. V. 2003. Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201. Meteoritics & Planetary Science 38:18331848.
  • Leake B. E. 1978. Nomenclature of amphiboles. American Mineralogist 63:10231052.
  • Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., and Guo Y. Z. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist 35:219246.
  • Lentz R. C. F., McSween H. Y., Jr., Ryan J., and Riciputi L. R. 2001. Water in Martian magmas: Clues from light lithophile elements in shergottite and nakhlite pyroxenes. Geochimica et Cosmochimica Acta 56:45514565.
  • Leshin L. A., Epstein S., and Stolper E. M. 1996. Hydrogen isotope geochemistry of SNC meteorites. Geochimica et Cosmochimica Acta 60:26352650.
  • Lodders K. 1998. A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions (abstract). Meteoritics & Planetary Science 33:A183A190.
  • Longhi J., and Pan V. 1989. The parent magmas of the SNC meteorites. Proceedings, 19th Lunar and Planetary Science Conference. pp. 451464.
  • Mathez E. A. and Webster J. D. 2005. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimica et Cosmochimica Acta 69:12751286.
  • Matzen A. K., Bake M. B., Beckett J. R., and Stolper E. M. 2011. Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. Journal of Petrology 52:12431263, doi:10.1093/petrology/egq089.
  • McCubbin F. M. and Nekvasil H. 2008. Maskelynite-hosted apatite in the Chassigny meteorite: Insights into late-stage magmatic volatile evolution in Martian magmas. American Mineralogist 93:676684.
  • McCubbin F. M., Nekvasil H., Harrington A. D., Elardo S. M., and Lindsley D. H. 2008. Compositional diversity and stratification of the Martian crust: Inferences from crystallization experiments on the picrobasalt Humphrey from Gusev Crater, Mars. Journal of Geophysical Research 113:E11013, doi:10.1029/2008JE003165.
  • McCubbin F. M., Smirnov A., Nekvasil H., Wang J. H., Hauri E., and Lindsley D. H. 2010a. Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian. Earth and Planetary Science Letters 292:132138.
  • McCubbin F. M., Steele A., Hauri E. H., Nekvasil H., Yamashita S., and Hemley R. J. 2010b. Nominally hydrous magmatism on the Moon. Proceedings of the National Academy of Sciences 27:1122311228.
  • McCubbin F. M., Steele A., Nekvasil H., Schnieders A., Rose T., Fries M., Carpenter P. K., and Jolliff B. L. 2010c. Detection of structurally bound hydroxyl in fluorapatite from Apollo mare basalt 15058,128 using TOF-SIMS. American Mineralogist 95:11411150.
  • McCubbin F. M., Hauri E. H., Elardo S. M., Kaaden K. E. V., Wang J., and Shearer C. K., Jr. 2012. Hydrous melting of the Martian mantle produced both depleted and enriched shergottites. Geology 40:683686, doi:10.1130/G33242.1.
  • McSween H. Y. 1994. What we have learned about Mars from SNC meteorites. Meteoritics 29:757779.
  • McSween H. Y. and Harvey R. P. 1993. Outgassing water on Mars: Constraints from melt inclusions in SNC meteorites. Science 259:18901892.
  • McSween H. Y., Grove T. L., Lentz R. C. F., Dann J. C., Holzheid A. H., Riciputi L. R., and Ryan J. G. 2001. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409:487490.
  • Merzbacher C. and Eggler D. H. 1984. A magmatic geohygrometer: Application to Mount St. Helens and other dacitic magmas. Geology 12:587590.
  • Misawa K., Shih C. Y., Reese Y., Nyquist L. E., and Barrat J. A. 2005. Rb-Sr and Sm-Nd isotopic systematics of the NWA 2737 chassignite (abstract). Meteoritics & Planetary Science 40:A104.
  • Monkawa A., Mikouchi T., Koizumi E., Sugiyama K., and Miyamoto M. 2006. Determination of the Fe oxidation state of the Chassigny kaersutite: A microXANES spectroscopic study. Meteoritics & Planetary Science 41:13211329.
  • Mysen B. O., Virgo D., Popp R. K., and Bertka C. M. 1998. The role of H2O in Martian magmatic systems. American Mineralogy 83:942946.
  • Nekvasil H., Filiberto J., McCubbin F. M., and Lindsley D. H. 2007. Alkalic parental magmas for chassignites? Meteoritics & Planetary Science 42:979992.
  • Nekvasil H., McCubbin F. M., Harrington A., Elardo S., and Lindsley D. H. 2009. Linking the Chassigny meteorite and the Martian surface rock Backstay: Insight into igneous crustal differentiation process on Mars. Meteoritics & Planetary Science 44:853869.
  • Nyquist L. E., Bogard D. D., Shih C.-Y., Greshake A., Stöffler D., and Eugster O. 2001. Ages and geologic histories of Martian meteorites. Space Science Reviews 96:105164, doi:10.1023/A:1011993105172.
  • Peslier A. H., Hnatyshin D., Herd C. D. K., Walton E. L., Brandon A. D., Lapen T. J., and Shafer J. T. 2010. Crystallization, melt inclusion, and redox history of a Martian meteorite: Olivine-phyric shergottite Larkman Nunatak 06319. Geochimica et Cosmochimica Acta 74:45434576.
  • Pieters C. M., Klima R. L., Hiroi T., Dyar M. D., Lane M. D., Treiman A. H., Noble S. K., Sunshine J. M., and Bishop J. L. 2008. Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine. Journal of Geophysical Research-Planets 113:112.
  • Popp R. K., Virgo D., Yoder H. S., Hoering T. C., and Phillips M. W. 1995a. An experimental study of phase equilibria and Fe oxy-component in kaersutitic amphibole: Implications for the fH2 and a H2O in the upper mantle. American Mineralogist 80:534548.
  • Popp R. K., Virgo D., and Phillips M. W. 1995b. H deficiency in kaersutitic amphiboles: Experimental verification. American Mineralogist 80:13471350.
  • Reynard B., Beck P., Barret J. A., and Bohn M. 2006. Pyroxene crystal chemistry and the late cooling history of NWA 2737 (abstract #1963). 37th Lunar and Planetary Science. CD-ROM.
  • Roedder E. 1979. Origin and significance of magmatic inclusions. Bulletin de Mineralogie 102:487510.
  • Sautter V., Toplis M. J., Lorand J.-P., and Macri M. 2012. Melt inclusions in augite from the nakhlite meteorites: A reassessment of nakhlite parental melt and implications for petrogenesis. Meteoritics & Planetary Science 47:330344.
  • Smith P. M., and Asimow P. D. 2005. Adiabat_1ph: A new front end to the MELTS, pMELTS, and pHMELTS models. Geochemistry, Geophysics, Geosystems 6:Q02004.
  • Sobolev A. V. 1996. Melt inclusions as a source of primary petrographic information. Petrology 4:209220.
  • Stockstill K. R., McSween H. Y., and Bodnar R. J. 2005. Melt inclusions in augite of the Nakhla Martian meteorite: Evidence for basaltic parental melt. Meteoritics & Planetary Science 40:377396.
  • Stormer J. C., Pierson M. L., and Tacker R. C. 1993. Variation of F-X-ray and Cl-X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. American Mineralogist 78:641648.
  • Takahashi E. 1978. Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts: Compositional dependence of partition coefficient. Geochimica et Cosmochimica Acta 42:18291844.
  • Toplis M. J. 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: Criteria for assessing and predicting equilibrium in nature and experimental systems. Contributions to Mineralogy and Petrology 149:2239.
  • Treiman A. 1993. The parent magma of the Nakhla (SNC) meteorite, inferred from magmatic inclusions. Geochimica et Cosmochimica Acta 57:47534767.
  • Treiman A. H., Dyar M. D., McCanta M., Noble S. K., and Pieters C. M. 2007. Martian Dunite NWA 2737: Petrographic constraints on geological history, shock events, and olivine color. Journal of Geophysical Research-Planets 112:120.
  • Usui T., Alexander C. M. O'D., Wang J. H., Simon J. I., and Jones J. H. 2012. Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth and Planetary Science Letters 357–358:119129.
  • Van de Moortèle B., Reynard B., McMillan P. F., Wilson M., Beck P., Gillet P., and Jahn S. 2007a. Shock-induced transformation of olivine to a new metastable (Mg, Fe)2SiO4 polymorph in Martian meteorites. Earth and Planetary Science Letters 261:469475.
  • Van de Moortèle B., Reynard B., Rochette P., Jackson M., Beck P., Gillet P., McMillan P. F., and McCammon C. A. 2007b. Shock-induced metallic iron nanoparticles in olivine-rich Martian meteorites. Earth and Planetary Science Letters 262:3749.
  • Varela M. E., Kurat G., and Clocchiatti R. 2001. Glass-bearing inclusions in Nakhla (SNC meteorite) augite: Heterogeneously trapped phases. Mineralogy and Petrology 71:155172.
  • Wadhwa M. and Crozaz G. 1995. Trace and minor elements in minerals of nakhlites and Chassigny: Clues to their petrogenesis. Geochimica et Cosmochimica Acta 59:36293645.
  • Watson L. L., Hutcheon I. D., Epstein S., and Stolper E. M. 1994. Water on Mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265:8690.
  • Webster J. D., Tappen C. M., and Mandeville C. W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta 73:559581.