SEARCH

SEARCH BY CITATION

References

  • Akai J. 1988. Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites. Geochimica et Cosmochimica Acta 52:15931599.
  • Akai J. 1990. Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162. Antarctic Meteorite Research 3:5555.
  • Akai J. 1992. TTT diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Antarctic Meteorite Research 5:120120.
  • Barin I. 1989. Thermochemical data of pure substances, part I. Weinheim: VCH. 1739 p.
  • Becker M., de Villiers J., and Bradshaw D. 2010a. The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits. Economic Geology 105:10251037.
  • Becker M., de Villiers J., and Bradshaw D. 2010b. The flotation of magnetic and non-magnetic pyrrhotite from selected nickel ore deposits. Minerals Engineering 23:10451052.
  • Belzile N., Chen Y. W., Cai M. F., and Li Y. 2004. A review on pyrrhotite oxidation. Journal of Geochemical Exploration 84:6576.
  • Berger E. L., Zega T. J., Keller L. P., and Lauretta D. S. 2011. Evidence for aqueous activity on comet 81P/Wild 2 from sulfide mineral assemblages in Stardust samples and CI chondrites. Geochimica et Cosmochimica Acta 75:35013513.
  • Bertaut E. F. 1953. Contribution a l'etude des structures lacunaires: la pyrrhotine. Acta Crystallographica 6:557561.
  • Bischoff A. 1998. Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review. Meteoritics & Planetary Science 33:11131122.
  • Bischoff A. and Metzler K. 1991. Mineralogy and petrography of the anomalous carbonaceous chondrites Yamato-86720, Yamato-82162, and Belgica-7904. Proceedings, NIPR Symposium on Antarctic Meteorites 4:226246.
  • Boctor N., Kurat G., Alexander C., and Prewitt C. 2002. Sulfide mineral assemblages in Boriskino CM chondrite (abstract #1534). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Brearley A. J. 1993. Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components. Geochimica et Cosmochimica Acta 57:15211550.
  • Brearley A. J. 2003. Nebular versus parent-body processing. In Meteorites, comets, and planets, edited by Davis A. M. Treatise on Geochemistry, vol. 1. Oxford: Elsevier-Pergamon. pp. 247268.
  • Brearley A. J. 2010. Further complexities in sulfides in the TIL 91722 CM2 chondrite: Microstructures of pentlandite coexisting with pyrrhotite (abstract #5159). Meteoritics & Planetary Science 45:A21.
  • Brearley A. J. 2011. Alteration of coarse-grained Fe and Fe,Ni sulfides in the Mighei CM2 carbonaceous chondrite: Evidence for the instability of primary pyrrhotite-pentlandite grains during aqueous alteration (abstract #2233). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Brearley A. J. and Martinez C. 2010. Ubiquitous exsolution of pentlandite and troilite in pyrrhotite from the TIL 91722 CM2 carbonaceous chondrite: A record of low temperature solid state processes (abstract #1689). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Bullock E. S., Gounelle M., Lauretta D. S., Grady M. M., and Russell S. S. 2005. Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body. Geochimica et Cosmochimica Acta 69:26872700.
  • Bullock E. S., Grady M. M., Gounelle M., and Russell S. S. 2007. Fe-Ni sulphides as indicators of alteration in CM chondrites (abstract #2057). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Bunch T. E. and Chang S. 1980. Carbonaceous chondrites II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochimica et Cosmochimica Acta 44:15431577.
  • Butler C. P. 1966. Temperatures of meteoroids in space. Meteoritics 3:5970.
  • Chase M. W., Davies C. A., Downey J. R., Frurip D. J., McDonald R. A., and Syverup A. N. 1985. NIST JANAF thermochemical tables. Gaithersburg, Maryland: National Institute of Standards and Technology.
  • Chizmadia L. J. and Brearley A. J. 2008. Mineralogy, aqueous alteration, and primitive textural characteristics of fine-grained rims in the Y-791198 CM2 carbonaceous chondrite: TEM observations and comparison to ALHA81002. Geochimica et Cosmochimica Acta 72:602625.
  • Chokai J., Zolensky M., Le L., Nakamura K., Mikouchi T., Monkawa A., Koizumi E., and Miyamoto M. 2004. Aqueous alteration mineralogy in CM carbonaceous chondrites (abstract #1506). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Ciesla F. J., Lauretta D. S., Cohen B. A., and Hood L. L. 2003. A nebular origin for chondritic fine-grained phyllosilicates. Science 299:549552.
  • Clayton R. N. and Mayeda T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta 63:20892104.
  • Condit R. H., Hobbins R. R., and Birchenall C. E. 1974. Self-diffusion of iron and sulfur in ferrous sulfide. Oxidation of Metals 8:409455.
  • Craig J. R. 1973. Pyrite-pentlandite assemblages and other low temperature relations in the Fe-Ni-S system. American Journal of Science 273-A:496510.
  • Dai Z. R. and Bradley J. P. 2001. Iron-nickel sulfides in anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta 65:36013612.
  • Eggler D. H. and Lorand J. P. 1993. Mantle sulfide geobarometry. Geochimica et Cosmochimica Acta 57:22132222.
  • Etschmann B., Pring A., Putnis A., Grguric B. A., and Studer A. 2004. A kinetic study of the exsolution of pentlandite (Ni, Fe)9S8 from the monosulfide solid solution (Fe, Ni)S. American Mineralogist 89:3950.
  • Francis C. A., Fleet M. E., Misra K., and Craig J. R. 1976. Orientation of exsolved pentlandite in natural and synthetic nickeliferous pyrrhotite. American Mineralogist 61:913920.
  • Frost B. R. 1991. Introduction to oxygen fugacity and its petrologic importance. In Oxide minerals: Petrologic and magnetic significance, edited by Donald H. Lindsley. Reviews in Mineralogy and Geochemistry, Vol. 25. Chantilly, VA: Mineralogical Society of America. pp. 19.
  • Fuchs L. H., Olsen E., and Jensen K. J. 1973. Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contributions to the Earth Sciences 10:139.
  • Guo W. and Eiler J. M. 2007. Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta 71:55655575.
  • Hanowski N. P. and Brearley A. J. 2001. Aqueous alteration of chondrules in the CM carbonaceous chondrite, Allan Hills 81002: Implications for parent body alteration. Geochimica et Cosmochimica Acta 65:495518.
  • Harries D., Pollok K., and Langenhorst F. 2011. Translation interface modulation in NC-pyrrhotites: Direct imaging by TEM and a model toward understanding partially disordered structural states. American Mineralogist 96:716731.
  • Harries D., Pollok K., and Langenhorst F. 2013. Oxidative dissolution of 4C- and NC-pyrrhotite: Intrinsic reactivity differences, pH dependence, and the effect of anisotropy. Geochimica et Cosmochimica Acta 102:2344.
  • Hawley J. E. and Haw V. A. 1957. Intergrowths of pentlandite and pyrrhotite. Economic Geology 52:132139.
  • Ikeda Y. 1992. An overview of the research consortium, “Antarctic carbonaceous chondrites with CI affinities, Yamato-86720, Yamato-82162, and Belgica-7904.” Proceedings of the NIPR Symposium on Antarctic Meteorites 5:4973.
  • Johnson C. A. and Prinz M. 1993. Carbonate compositions in CM and CI chondrites and implications for aqueous alteration. Geochimica et Cosmochimica Acta 57:28432852.
  • Kaneda H., Takenouchi S., and Shoji T. 1986. Stability of pentlandite in the Fe-Ni-Co-S system. Mineralium Deposita 21:169180.
  • Keil K., Stoeffler D., Love S. G., and Scott E. R. D. 1997. Constraints on the role of impact heating and melting in asteroids. Meteoritics & Planetary Science 32:349363.
  • Kelly D. P. and Vaughan D. J. 1983. Pyrrhotite-pentlandite ore textures: A mechanistic approach. Mineralogical Magazine 47:453463.
  • Kerridge J. F. 1976. Formation of iron sulphide in solar nebula. Nature 259:189190.
  • Kerridge J. F. and Bunch T. E. 1979. Aqueous activity on asteroids: Evidence from carbonaceous chondrites. In Asteroids, edited by Gehrels T. Tucson, Arizona: The University of Arizona Press. pp. 745764.
  • Kerridge J. F., Macdougall J. D., and Marti K. 1979. Clues to the origin of sulfide minerals in CI chondrites. Earth and Planetary Science Letters 43:359367.
  • Kimura M., Grossman J. N., and Weisberg M. K. 2011. Fe-Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history. Meteoritics & Planetary Science 46:431442.
  • Kissin S. A. and Scott S. D. 1982. Phase relations involving pyrrhotite below 350 °C. Economic Geology 77:17391754.
  • Kosyakov V. I., Sinyakova E. F., and Shestakov V. A. 2003. Dependence of sulfur fugacity on the composition of phase associations in the Fe-FeS-NiS-Ni system at 873 K. Geochemistry International 41:660669.
  • Lauretta D. S., Kremser D. T., and Fegley B. 1996. The rate of iron sulfide formation in the solar nebula. Icarus 122:288315.
  • Lauretta D. S., Lodders K., and Fegley B. 1997. Experimental simulations of sulfide formation in the solar nebula. Science 277:358360.
  • Lauretta D. S., Lodders K., and Fegley B. 1998. Kamacite sulfurization in the solar nebula. Meteoritics & Planetary Science 33:821833.
  • Lipschutz M. E., Zolensky M. E., and Bell M. S. 1999. New petrographic and trace element data on thermally metamorphosed carbonaceous chondrites. Antarctic Meteorite Research 12:5757.
  • Losiak A. and Velbel M. A. 2011. Evaporite formation during weathering of Antarctic meteorites—A weathering census analysis based on the ANSMET database. Meteoritics & Planetary Science 46:443459.
  • Lusk J. and Bray D. M. 2002. Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu-Fe-S and Fe-S systems at 1 bar and temperatures between 185 and 460 °C. Chemical Geology 192:227248.
  • Maldonado E. M. and Brearley A. J. 2011. Exsolution textures of pyrrhotite and alteration of pyrrhotite and pentlandite in the CM2 carbonaceous chondrites Crescent, Mighei and ALH 81002 (abstract #2271). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Mayeda T. K. and Clayton R. N. 1998. Oxygen isotope effects in serpentine dehydration (abstract #1405). 29th Lunar and Planetary Science Conference. CD-ROM.
  • McSween H. Y. Jr. 1979. Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochimica et Cosmochimica Acta 43:17611770.
  • Metzler K., Bischoff A., and Stöffler D. 1992. Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes. Geochimica et Cosmochimica Acta 56:28732897.
  • Morimoto N., Gyobu A., Mukaiyama H., and Izawa E. 1975a. Crystallography and stability of pyrrhotites. Economic Geology 70:824833.
  • Morimoto N., Gyobu A., Tsukuma K., and Koto K. 1975b. Superstructure and nonstoichiometry of intermediate pyrrhotite. American Mineralogist 60:240248.
  • Nakamura T. 2005. Post-hydration thermal metamorphism of carbonaceous chondrites. Journal of Mineralogical and Petrological Sciences 100:260272.
  • Nakamura T. 2006. Yamato 793321 CM chondrite: Dehydrated regolith material of a hydrous asteroid. Earth and Planetary Science Letters 242:2638.
  • Nakato A., Nakamura T., Kitajima F., and Noguchi T. 2008. Evaluation of dehydration mechanism during heating of hydrous asteroids based on mineralogical and chemical analysis of naturally and experimentally heated CM chondrites. Earth, Planets and Space 60:855864.
  • Nakato A., Nakamura T., Noguchi T., Ahn I., and Lee J. I. 2011. The variety of thermal evolution of primitive hydrous asteroids recorded in dehydrated carbonaceous chondrites (abstract #5416). Meteoritics & Planetary Science 46:A175.
  • Nakazawa H. and Morimoto N. 1970. Pyrrhotite phase relations below 320 C. Proceedings of the Japan Academy 46:678683.
  • Naldrett A. J., Craig J. R., and Kullerud G. 1967. The central portion of the Fe-Ni-S system and its bearing on pentlandite exsolution in iron-nickel sulfide ores. Economic Geology 62:826847.
  • Naraoka H., Mita H., Komiya M., Yoneda S., Kojima H., and Shimoyama A. 2004. A chemical sequence of macromolecular organic matter in the CM chondrites. Meteoritics & Planetary Science 39:401406.
  • Nazarov M. A., Kurat G., Brandstaetter F., Ntaflos T., Chaussidon M., and Hoppe P. 2009. Phosphorus-bearing sulfides and their associations in CM chondrites. Petrology 17:101123.
  • Novikov G. V., Egorov V. K., Popov V. I., and Sipavina L. V. 1977. Kinetics and mechanism of transformations in iron-rich pyrrhotites and in troilite-pyrrhotite metastable assemblages. Physics and Chemistry of Minerals 1:114.
  • Palmer E. E. and Lauretta D. S. 2011. Aqueous alteration of kamacite in CM chondrites. Meteoritics & Planetary Science 46:15871607.
  • Paul R. L. and Lipschutz M. E. 1990. Consortium study of labile trace elements in some Antarctic carbonaceous chondrites: Antarctic and non-Antarctic meteorite comparisons. Antarctic Meteorite Research 3:8095.
  • Pósfai M., Sharp T. G., and Kontny A. 2000. Pyrrhotite varieties from the 9.1 km deep borehole of the KTB project. American Mineralogist 85:14061415.
  • Powell A. V., Vaqueiro P., Knight K. S., Chapon L. C., and Sánchez R. D. 2004. Structure and magnetism in synthetic pyrrhotite Fe7S8: A powder neutron-diffraction study. Physical Review B 70:1441514415.
  • Raghavan V. 2004. Phase diagram evaluations: Fe-Ni-S (iron-nickel-sulfur). Journal of Phase Equilibria and Diffusion 25:373381.
  • Rau H. 1976. Energetics of defect formation and interaction in pyrrhotite Fe1-xS and its homogeneity range. Journal of Physics and Chemistry of Solids 37:425429.
  • Rowe M. W., Clayton R. N., and Mayeda T. K. 1994. Oxygen isotopes in separated components of CI and CM meteorites. Geochimica et Cosmochimica Acta 58:53415347.
  • Rubanov S. and Munroe P. R. 2004. FIB-induced damage in silicon. Journal of Microscopy 214:213221.
  • Rubin A. E., Trigo-Rodríguez J. M., Huber H., and Wasson J. T. 2007. Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 71:23612382.
  • Tomeoka K. and Buseck P. R. 1985. Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni. Geochimica et Cosmochimica Acta 49:21492163.
  • Tomeoka K., Kojima H., and Yanai K. 1989. Yamato-86720: A CM carbonaceous chondrite having experienced extensive aqueous alteration and thermal metamorphism. Proceedings of the NIPR Symposium on Antarctic Meteorites 2:5574.
  • Tonui E., Zolensky M., and Lipschutz M. 2002. Petrography, mineralogy and trace element chemistry of Yamato-86029 Yamato-793321 and Lewis Cliff 85332: Aqueous alteration and heating events. Antarctic Meteorite Research 15:3858.
  • Toulmin P. and Barton P. B. Jr. 1964. A thermodynamic study of pyrite and pyrrhotite. Geochimica et Cosmochimica Acta 28:641671.
  • Vaughan D. J. and Craig J. R. 1978. Mineral chemistry of metal sulfides. Cambridge: Cambridge University Press. 493 p.
  • Velbel M. A. 1988. The distribution and significance of evaporitic weathering products on Antarctic meteorites. Meteoritics 23:151159.
  • Wang H. and Salveson I. 2005. A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1-xS (0 ≤ x ≤ 0.125): Polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions 78:547567.
  • Whitney J. A. 1984. Fugacities of sulfurous gases in pyrrhotite-bearing silicic magmas. American Mineralogist 69:6878.
  • Wittmann A., Swindle T. D., Cheek L. C., Frank E. A., and Kring D. A. 2010. Impact cratering on the H chondrite parent asteroid. Journal of Geophysical Research 115:E07009E07009.
  • Wozniakiewicz P. J., Ishii H. A., Kearsley A. T., Burchell M. J., Bland P. A., Bradley J. P., Dai Z., Teslich N., Collins G. S., Cole M. J., and Russel S. S. 2011. Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy. Meteoritics & Planetary Science 46:10071024.
  • Yamamoto K. and Nakamura N. 1990. REE characteristics of Yamato-82162 and-86720 meteorites and their inference to classification. Antarctic Meteorite Research 3:6969.
  • Zolensky M. E. 1987. Tochilinite in C2 carbonaceous chondrites: A review with suggestions (abstract). Proceedings, 18th Lunar and Planetary Science Conference. pp. 11321133.
  • Zolensky M. E. and Le L. 2003. Iron-nickel sulfide compositional ranges in CM chondrites: No simple plan (abstract #1235). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Zolensky M. E. and Thomas K. L. 1995. Iron and iron-nickel sulfides in chondritic interplanetary dust particles. Geochimica et Cosmochimica Acta 59:47074712.
  • Zolensky M. E., Prinz M., and Lipschutz M. 1991. Mineralogy and thermal history of Y-82162, Y-86720, and B-7904. Proceedings of the NIPR Symposium on Antarctic Meteorites 16:195196.
  • Zolensky M. E., Barrett R. A., and Browning L. 1993. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochimica et Cosmochimica Acta 57:31233148.
  • Zolensky M. E., Ivanov A. V., Yang S. V., Mittlefehldt D. W., and Ohsumi K. 1996. The Kaidun meteorite: Mineralogy of an unusual CM1 lithology. Meteoritics & Planetary Science 31:484493.
  • Zolensky M. E., Mittlefehldt D. W., Lipschutz M. E., Wang M.-S., Clayton R. N., Mayeda T. K., Grady M. M., Pillinger C., and Barber D. 1997. CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochimica et Cosmochimica Acta 61:50995115.